Published online 20 March 2013 in Wiley Online Library (wileyonlinelibrary.com).

Ethyl 7-amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5H-thiazolo[3,2-a]pyrimidine-6carboxylate was synthesized by the reaction of 4-(2-aminothiazol-4-yl)-3-methyl-5-oxo-1-phenyl-2-pyrazoline with arylidene ethyl cyanoacetate and it transformed to related fused heterocyclic systems via reaction with various reagents. The biological activities of these compounds were evaluated.
J. Heterocyclic Chem., 50, 179 (2013).

INTRODUCTION

The formation of a new fused heterocyclic ring is an important task for heterocyclic chemistry from various points of view. The reactions of thiazolo[3,2-a]pyrimidines have attracted the attention of many chemists and used them in the synthesis of different heterocycles [1-15] possessing biological [10-14] and medicinal activities [15]. These observations in continuation with our general interest in these compounds led us to examine the chemistry of pyrazolinyl thiazolopyrimidine carboxylate to be used as starting material for the synthesis of novel thiazolopyrimidines and thiazolopyrimidopyrimidines bearing pyrazolone moiety, which have biological activities.

RESULTS AND DISCUSSION

This investigation was directed toward the synthesis of novel pyrazolinyl thiazolopyrimidine and pyrazolinyl thiazolopyrimidopyrimidine derivatives. We report herein reactions of ethyl 7-amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate 1a,b to synthesize new compounds containing both pyrazolone, thiazole and pyrimidine moieties, and evaluate their biological activities. Thus reaction of compound 1a,b with acetyl and/or benzoyl chloride gave the corresponding acetyl- or benzoyl derivatives 7-acetylamino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-arylthiazolo [3,2-a]pyrimidine 2a,b and/or 7-benzoylamino-6-carboethoxy-

3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-arylthiazolo [3,2-a] pyrimidine 3a,b. With hydrazine hydrate, 1a,b gave the corresponding carbohydrazide derivatives 7-amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5H-thiazolo [3,2-a]pyrimidine-6-carbohydrazide $\mathbf{4 a}, \mathbf{b}$. Interaction of $\mathbf{1 a}, \mathbf{b}$ with phenyl isothiocyanate gave the fused tricyclic compounds 3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-7-phenyl-7,9-dihydro-5H-thiazolo[3,2-a]pyrimido [4,5-d]pyrimidine-8-thione 5a,b, which were alkylated with ethyl iodide to give 8 -ethylthio-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-7-phenyl-5,7dihydrothiazolo $[3,2-a]$ pyrimido $[4,5-d]$ pyrimidine $\mathbf{6 a}, \mathbf{b}$. Reaction of compound $\mathbf{6 a}, \mathbf{b}$ with hydrazine hydrate afforded 3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-7-phenyl-5,7-dihydro-8-hydrazinothiazolo-[3,2-a]pyrimido [4,5- d]pyrimidine 7a,b (Scheme 1).

The o-amino carbohydrazide function of compound $\mathbf{4 a}$, b was exploited to synthesize further fused pyrimidine derivatives. Thus, reaction of $\mathbf{4 a}, \mathbf{b}$ with formic acid, acetic anhydride, and/or urea afforded 3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-7-N-formylamino-5,7-dihydro -5H-thiazolo[3,2-a]pyrimido[4,5-d]pyrimidine 8a,b, 3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-8-methyl-7-N,N-diacetylamino-5,7-dihydrothiazolo [3,2-a] pyrimido $[4,5-d]$ pyrimidine $\mathbf{9 a}, \mathbf{b}$, and 3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-7-amino-7,9-dihydro$5 H$-thiazolo[3,2-a]pyrimido[4,5- d] pyrimidine-6,8-dione 10a,b respectively.

Reaction of carbohydrazide compound $\mathbf{4 a}, \mathbf{b}$ with acetylacetone or triethyl orthoformate gave 4-(7-amino-6-(3,5-dimethyl-1H-pyrazole-1-carbonyl)-5-aryl-5H-thiazolo [3,2-a]pyrimidin-3-yl)-3-methyl-1-phenyl-2-pyrazolin-5-one 11a,b or 3-(3-methyl-5-oxo-1-phenyl-2-pyraz-olin-4-yl)-6-oxo-5-aryl-7-ethoxymethyleneamino-5,7-dihydro-5H-thiazolo [3,2-a]pyrimido[4,5-d]pyrimidine 12a,b (Scheme 2).

Also, reaction of $\mathbf{4 a}, \mathbf{b}$ with nitrous acid gave 7-amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5H-thiazolo[3,2-a]pyrimidine-6-carboazide 13a,b, which refluxed with toluene underwent Curtius rearrangement to give 7-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-9-aryl-2-oxo-1,3-dihydro-9H-imidazo[4,5-d]thiazolo[3,2-a]pyrimidine 14a,b.

Condensation of $\mathbf{4 a}, \mathbf{b}$ with benzaldehyde in the presence of a catalytic amount of piperidine gave benzaldehyde,7-amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl5 H -thiazolo[3,2-a]- pyrimidine-6-carbohydrazone 15a,b, which reacted with triethyl orthoformate to give 7-benzylideneamino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-5H-thiazolo[3,2-a]pyrimido-[4,5-d] pyrimidine 16a,b (Scheme 3).

The structure of new compounds was confirmed on the basis of elemental analyses and spectral data (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR, and MS).

The biocidal activity of the synthesized compounds was tested against Gram-positive and Gram-negative bacteria as well as against yeast-like and filamentous fungi (Table 1). All microbes are potentially pathogenic especially for debilitated, malnourished, or immunosuppressed individuals. Different compounds showed varying antimicrobial action depending on the microorganism species and the compound itself. Compounds 2b, 4b, 5a, and 8a proved to be excellent candidates as antibacterial agents being able to inhibit all bacterial species tested. Staphylococcus aureus was the most sensitive organism being inhibited with $\leq 2.5 \mathrm{mg} / \mathrm{mL}$ of these compounds. Compounds 3a, 6b, 7a, 9a, and 10b were also effective but often at higher concentrations ranging from 10-20 $\mathrm{mg} / \mathrm{mL}$. The rest of the tested compounds showed narrower spectrum of antibacterial activity.

Regarding the antifungal action, compounds $\mathbf{3 a}, \mathbf{4 b}, \mathbf{8 a}$, $\mathbf{8 b}$, and $\mathbf{9 a}$ were inhibitory to most or all tested fungi with MICs $\leq 20 \mathrm{mg} / \mathrm{mL}$. Geotrichum candidum (frequently reported to cause geotrichosis in human and animals) was sensitive to 12 out of the 20 compounds tested. Aspergillus flavus (a famous allergenic, pathogenic, and toxigenic mold) showed sensitivity to 7 compounds and was markedly inhibited by compound $\mathbf{8 b}$ with MIC $10 \mathrm{mg} / \mathrm{mL}$ and high sensitive to 9a with MIC $2.5 \mathrm{mg} / \mathrm{mL}$. Candida

Scheme 2

albicans (cause of candidosis in humans and animals) and Scopulariopsis brevicaulis (often reported as a cause of nail infections) were also inhibited by some compounds as shown in Table 1. Trichophyton rubrum (usually involved in skin and nail infections) was successfully inhibited by compounds $\mathbf{3 a}, \mathbf{8 b}$, and $\mathbf{9 a}$ at MIC of $20 \mathrm{mg} / \mathrm{mL}$. Fusarium oxysporum (one of famous plant pathogens) was also sensitive to compounds $\mathbf{3 a}, \mathbf{4 b}, \mathbf{5 a}$, and $\mathbf{8 b}$ (MICs between $10-20 \mathrm{mg} / \mathrm{mL}$).

CONCLUSIONS

This investigation was directed toward the synthesis of novel pyrazolinyl thiazolopyrimidine and pyrazolinyl thiazolopyrimidopyrimidine derivatives by the reaction of amino ester derivatives with various reagents. The synthesized compounds were tested against some strains of bacteria and fungi and some of them exhibit antimicrobial activity.

EXPERIMENTAL

Melting points were determined on APP. Digital ST 15 melting point apparatus and are uncorrected. Elemental analyses (C, H, N, S) were conducted using a Vario EL C, H, N, S Analyzer; their results were found to be in good agreement $(\pm 0.3 \%)$ with the calculated values. The IR spectra were obtained on a PyeUnicam SP 3-100 spectrophotometer using the KBr disc technique ($\mathrm{v}_{\text {max }}$ in cm^{1}). ${ }^{1} \mathrm{H}$ NMR spectra were recorded on EM 90 NMR
spectrometer, and a varian ${ }^{1} \mathrm{H}$-Gemini 400 spectrometer with chemical shifts expressed in $\delta \mathrm{ppm}$ using TMS as the internal reference. ${ }^{13} \mathrm{C}$ NMR spectra were obtained on a varian ${ }^{1} \mathrm{H}$-Gemini 400 spectrometer. The mass spectra were run on JOEL JMS 600 spectrometer.

7-Amino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-phenyl-5H-thiazolo[3,2-a] pyrimidine [16] (1a). A mixture of 4-(2-aminothiazol-4-yl)-3-methyl-5-oxo-1-phenyl-2-pyrazoline (10 mmol) and benzylidene ethyl cyanoacetate (10 mmol) in ethanol (30 mL) and piperidine (five drops) was refluxed for 10 h . The reaction mixture was poured into cold water, and the solid precipitate was collected, dried, and crystallized from toluene to give 1a.

7-Amino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-pchlorophenyl-5H-thiazolo[3,2-a]pyrimidine (1b). A mixture of 4-(2-aminothiazol-4-yl)-3-methyl-5-oxo-1-phenyl-2-pyrazoline (10 mmol) and p-chlorobenzylidene ethyl cyanoacetate (10 mmol) in ethanol (30 mL) and piperidine (five drops) was refluxed for 10 h . The reaction mixture was poured into cold water and the solid precipitate was collected, dried, and crystallized from toluene to give pale yellow crystals, yield $3.65 \mathrm{~g}(72 \%), \mathrm{mp} 286-288^{\circ} \mathrm{C}$; IR (KBr): 3100-3250 $\left(\mathrm{NH}_{2}\right)$, 2915 (CH aliphatic), 1710 (CO ester), 1640 (CO pyrazolone) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.64-7.24(\mathrm{~m}, 5 \mathrm{H}$, phenyl protons), $7.15-7.00(\mathrm{~m}, 4 \mathrm{H}$, phenyl protons), 6.90 $(\mathrm{s}$, thiazole- H$), 6.70(\mathrm{~s}$, pyrimidine- H$), 6.60(\mathrm{~s}$, pyrazolone- H$)$, $5.40\left(\mathrm{~s}, \mathrm{NH}_{2}\right.$ exchangable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 4.19(\mathrm{q}, J=7.00 \mathrm{~Hz}$, $\left.\mathrm{CH}_{2}\right), 2.25\left(\mathrm{~s}\right.$, pyrazolone $\left.\mathrm{CH}_{3}\right), 1.20\left(\mathrm{t}, J=7.00 \mathrm{~Hz}, \mathrm{CH}_{3}\right) \mathrm{ppm}$. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=170$ (CO pyrazolone), 167 (CO ester), $162(\mathrm{C}=\mathrm{N}$ pyrimidine), 159 and $105(\mathrm{C}=\mathrm{C}$

pyrimidine $), 157(\mathrm{C}=\mathrm{N}$ pyrazolone $), 154$ (C thiazole), 141-127 (C and CH phenyl rings), $89\left(\mathrm{CH}\right.$ thiazole), $60\left(\mathrm{CH}_{2}\right.$ ethyl), $50\left(\mathrm{CH}\right.$ pyrazolone), $45(\mathrm{CH}$ pyrimidine $), 18\left(\mathrm{CH}_{3}\right.$ pyrazolone), $14\left(\mathrm{CH}_{3}\right.$ ethyl) ppm. EI ms: $m / z=509.38\left[\mathrm{M}^{+}+2\right](15), 506.89$ $\left[\mathrm{M}^{+}\right]$(49), 473.01(35), 456.51 (24), 444.14 (41), 387.01(40), 316.12 (51), 271.92 (19), 174.00 (71), 37.05 (11), 35.27 (17).

7-Acetylamino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5H-thiazolo [3,2-a]pyrimidine 2a,b. A mixture of $\mathbf{1 a}$ or $\mathbf{1 b}(10 \mathrm{mmol})$ and acetyl chloride $(5 \mathrm{~mL})$ in pyridine (15 mL) was refluxed for 3 h . The reaction mixture was cooled, poured into cold water, and the solid separated product was filtered off to give $\mathbf{2 a}$ and $\mathbf{2 b}$, respectively.

7-Acetylamino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-phenyl-5H-thiazolo [3,2-a]pyrimidine (2a). Crystallized from benzene to give white crystals, yield 3.86 g (72%), mp $210-212^{\circ} \mathrm{C}$. IR (KBr): 3100-3250 $\left(\mathrm{NH}_{2}\right), 2915(\mathrm{CH}$ aliphatic), 1710 (CO ester), 1685 (CO acetyl), 1640 (CO pyrazolone) cm^{-1}. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right): \delta=8.30(\mathrm{~s}, \mathrm{NH}$ exchangable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.70-7.20(\mathrm{~m}, 10 \mathrm{H}$, phenyl protons), $7.00(\mathrm{~s}$, thiazole- H$)$, $6.90(\mathrm{~s}$, pyrimidine-H), $6.80(\mathrm{~s}$, pyrazolone-H), $4.10(\mathrm{q}, J=6.70$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 3.20\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ acetyl), 2.30 (s, pyrazolone- CH_{3}), 1.3 ($\mathrm{t}, J=6.70 \mathrm{~Hz}, \mathrm{CH}_{3}$) ppm.

7-Acetylamino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-p-chlorophenyl-5H-thiazolo[3,2-a]pyrimidine (2b). Crystallized from benzene to give white powder, yield 3.74 g (68%), $\mathrm{mp} 219-221^{\circ} \mathrm{C}$. IR (KBr): 3100-3250 (NH_{2}), 2915 (CH aliphatic), 1710 (CO ester), 1685 (CO acetyl), 1640 (CO pyrazolone) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 90 \mathrm{MHz}\right): \delta=8.20$ (s, NH exchangable with $\mathrm{D}_{2} \mathrm{O}$), 7.70-7.40 (m, 9H, phenyl protons), 7.00 (s, thiazole- H), $6.90(\mathrm{~s}$, pyrimidine-H), $6.80(\mathrm{~s}$, pyrazolone-H), $4.10(\mathrm{q}, J=10$ $\left.\mathrm{Hz}, \mathrm{CH}_{2}\right), 3.20\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ acetyl), $2.30\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ pyrazolone), 1.3 ($\mathrm{t}, J=10 \mathrm{~Hz}, \mathrm{CH}_{3}$) ppm.

7-Benzoylamino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5H-thiazolo [3,2-a]pyrimidine 3a,b. A mixture of $\mathbf{1 a}$ or $\mathbf{1 b}(10 \mathrm{mmol})$ and benzoyl chloride $(5 \mathrm{~mL})$ in
pyridine (15 mL) was refluxed for 3 h . The reaction mixture was cooled and the solid product thus separated was filtered off, treated with pet. ether $\left(60-80^{\circ} \mathrm{C}\right)$ and crystallized from the proper solvent to give $\mathbf{3 a}$ and $\mathbf{3 b}$, respectively.

7-Benzoylamino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-phenyl-5H-thiazolo[3,2-a]pyrimidine (3a). Crystallized from ethanol to give pale brown powder, yield $4.04 \mathrm{~g}(70 \%)$, mp $215-217^{\circ} \mathrm{C}$. IR (KBr): 3250 (NH exchangable with $\mathrm{D}_{2} \mathrm{O}$), 2915 (CH aliphatic), 1710 (CO ester), 1690 (CO benzoyl), 1640 (CO pyrazolone) cm^{-1}. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 90 \mathrm{MHz}$): $\delta=7.90(\mathrm{~s}, \mathrm{NH}$ exchangable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.70-7.10(\mathrm{~m}, 15 \mathrm{H}$, phenyl protons), 7.00 (s, thiazole-H), $6.90(\mathrm{~s}$, pyrimidine- H$), 6.80(\mathrm{~s}$, pyrazolone- H$)$, 4.00 (q, $J=6.70 \mathrm{~Hz}, \mathrm{CH}_{2}$ ester), 2.30 (s, pyrazolone- CH_{3}), 1.20 ($\mathrm{t}, J=6.70 \mathrm{~Hz}, \mathrm{CH}_{3}$ ester) ppm.

7-Benzoylamino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-p-chlorophenyl-5H-thiazolo[3,2-a]pyrimidine (3b). Crystallized from ethanol to give red powder, yield 4.28 g (70\%), mp 200-202 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3250 (NH), 2915 (CH aliphatic), 1710 (CO ester), 1690 (benzoyl), 1640 (pyrazolone) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 90 \mathrm{MHz}\right): \delta=7.90$ (s , NH exchangable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.70-7.20(\mathrm{~m}, 14 \mathrm{H}$, phenyl protons), $7.00(\mathrm{~s}$, thiazole- H$)$, $6.90(\mathrm{~s}$, pyrimidine-H), $6.80(\mathrm{~s}$, pyrazolone-H), $4.00(\mathrm{q}, J=6.60$ $\mathrm{Hz}, \mathrm{CH}_{2}$ ester), 2.30 (s, CH_{3}-pyrazolone), 1.20 ($\mathrm{t}, J=6.60 \mathrm{~Hz}$, CH_{3} ester) ppm.

7-Amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5H-thiazolo[3,2-a]pyrimidine-6-carbohydrazide 4a,b. A mixture of $\mathbf{1 a}$ or $\mathbf{1 b}(10 \mathrm{mmol})$ and hydrazine hydrate $98 \%(1.5 \mathrm{~mL}$, 10 mmol) was refluxed for 2 h . The reaction mixture was cooled, and the solid thus formed was collected and crystallized from the proper solvent to give $\mathbf{4 a}$ and $\mathbf{4 b}$, respectively.

7-Amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-phenyl-5H-thiazolo[3,2-a] pyrimidine-6-carbohydrazide (4a). Crystallized from ethanol to give white crystals, yield 3.08 g (67%), mp $270-272^{\circ} \mathrm{C}$. ir (KBr): 3250-3450 $\left(\mathrm{NHNH}_{2}, \mathrm{NH}_{2}\right), 1680(\mathrm{CO}$ carbohydrazide), 1635 (CO pyrazolone) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right.$,

March 2013 Synthesis of Some New Heterocycles Derived from Ethyl 7-Amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate of Biological Importance

Table 1
The minimum inhibitory concentrations of the compounds tested ($\mathrm{mg} / \mathrm{mL}$).

	2a	2b	3a	3b	4a	4b	5a	5b	6	6b	7a	7b	8a	8b	9a	9b	10a	10b	11a	11b	Ref*
Bacteria																				-	
Bacillas cereus	10	20	20	10	-	1.25	20	-	-	20	-	10	20	-	20	-	20	20	-	-	0.25
(Gram positive)																					
Staphylococcus aureus (Gram positive)	-	0.25	10	-	-	2.5	2.5	-	-	2.5	-	-	0.25	2.5	0.25	-	-	20	-	-	0.125
Pseudomonas aeruginosa (Gram negative)	-	20	-	-	-	2.5	20	-	20		20	-	20	-	20	-	-	20	-	-	5
Serratia marcescens (Gram negative)	20	2.5	20	-	-	10	20	-	-	10	20	10	10	20	-	-	-	20	20	20	1.25
Escherichia coli (Gram negative)	-	10	20	-	20	2.5	20	20	20	-	20	-	20	-	20	-	20	-	-	-	1.25
Fungi																					
Geotrichum candidum	-	-	20	-	-	10	-	-	-	20	-	-	-	20	10	20	20	20	20	20	2.5
Candida albicans	20	-	20	20	-	10	-	20	-	-	-	-	20	20	-	-	-	-	-	-	2.5
Fusarium oxysporum	-	-	20	-	-	10	20	-	-	-	-	-	-	-	20	-	-	-	-	-	2.5
Aspergillus flavus	-	-	-	-	-	20	20	-	-	20	-	-	20	10	2.5	-	-	20	-	-	2.5
Scopulariopsis brevicaulis	20	-	-	-	-	10	-	-	-	-	-	-	20	10	20	-	-	-	-	-	2.5
Trichophyton rubrum	-	-	20	-	-	-	-	-	-	-	-	-	-	20	20	-	-	-	-	-	2.5

*Ref. $=$ Reference drugs $=($ chloramphenicol as antibacterial and clotrimazole as antifungal).
$(-)=$ No antimicrobial action.
$400 \mathrm{MHz}): \delta=9.50\left(\mathrm{~s}, \mathrm{NH}\right.$ exchangable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.64-7.24(\mathrm{~m}$, 5 H , phenyl protons), 7.19 ($\mathrm{s}, \mathrm{NH}_{2}$ exchangable with $\mathrm{D}_{2} \mathrm{O}$), 7.147.06 ($\mathrm{m}, 5 \mathrm{H}$, phenyl protons), 6.90 (s , thiazole- H), 6.70 (s, pyrimidine-H), 6.60 (s, pyrazolone-H), 5.39 (s, NH_{2} pyrimidine exchangable with $\mathrm{D}_{2} \mathrm{O}$), $2.21\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ pyrazolone) $\mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta 170(\mathrm{CO}$ pyrazolone), $164(\mathrm{CONH}), 162$ ($\mathrm{C}=\mathrm{N}$ pyrimidine), 157 and $103(\mathrm{C}=\mathrm{C}$ pyrimidine), $155(\mathrm{C}=\mathrm{N}$ pyrazolone), 154 (C thiazole), 142-124 (C and CH phenyl rings), 89 (CH thiazole), 50 (CH pyrazolone), 45 (CH pyrimidine), 18 $\left(\mathrm{CH}_{3}\right.$ pyrazolone) ppm. EI ms: m/z: $458.79\left[\mathrm{M}^{+}\right]$(67), 452.12 (24), 431.40 (23), 382.32 (42), 285.90 (59), 173 (71).

7-Amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-p-chlorophenyl-5H-thiazolo[3,2-a]-pyrimidine-6-carbohydrazide (4b). Crystallized from benzene to give pale yellow crystals, yield $3.19 \mathrm{~g}(65 \%), \mathrm{mp}: 262-263^{\circ} \mathrm{C}$. IR (KBr): 3250$3450\left(\mathrm{NHNH}_{2}, \mathrm{NH}_{2}\right), 1680$ (CO carbohydrazide), $1635(\mathrm{CO}$ pyrazolone) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 90 \mathrm{MHz}$): $\delta=9.30(\mathrm{~s}, \mathrm{NH}$ exchangable with $\mathrm{D}_{2} \mathrm{O}$), 7.73-7.29 ($\mathrm{m}, 9 \mathrm{H}$, phenyl protons), 7.19 (s, NH_{2} exchangable with $\mathrm{D}_{2} \mathrm{O}$), 7.05 (s, thiazole-H), 6.90 (s, pyrimidine-H), 6.80 (s, pyrazolone-H), $5.39\left(\mathrm{~s}, \mathrm{NH}_{2}\right.$ pyrimidine exchangable with $\mathrm{D}_{2} \mathrm{O}$), 2.3 ($\mathrm{s}, \mathrm{CH}_{3}$ pyrazolone) ppm.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-0xo-5-aryl-7-phenyl-7,9-dihydro-5H-thiazolo-[3,2-a]pyrimido[4,5-d] pyrimidine-8-thione 5a,b. A mixture of $\mathbf{1} \mathbf{a}, \mathbf{b}(10 \mathrm{mmol})$ and phenyl isothiocyanate ($1.4 \mathrm{~g}, 10 \mathrm{mmol}$) in pyridine (30 mL) was refluxed for 8 h . The cooled reaction mixture was poured into ice water mixture, acidified with acetic acid, and the precipitated solid was collected and crystallized from the proper solvent to give 5a and 5b, respectively.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5,7-diphenyl-7,9-dihydro-5H-thiazolo- [3,2-alpyrimido[4,5-d]pyrimidine-8-thione ($5 a$). Crystallized from benzene to give pale green powder, yield $3.66 \mathrm{~g}(65 \%)$, mp $237-239^{\circ} \mathrm{C}$. IR (KBr): 3250 (NH), 1695 (CO pyrimidine), 1635 (CO pyrazolone), $1510(\mathrm{C}=\mathrm{S}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=10.00(\mathrm{~s}, \mathrm{NH}$ exchangable with $\mathrm{D}_{2} \mathrm{O}$), 7.64-7.24 (m, 10H, phenyl protons), 7.14-7.06 (m,

5 H , phenyl protons), 6.90 (s , thiazole-H), 6.80 (s, pyrimidineH), 6.75 (s, pyrazolone-H), $2.20\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ pyrazolone) $\mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=178(\mathrm{C}=\mathrm{S}$ pyrimidine $), 170(\mathrm{CO}$ pyrazolone), $167(\mathrm{C}=\mathrm{O}$ pyrimidine $), 162(\mathrm{C}=\mathrm{N}$ pyrimidine $)$, 159 and 103 ($\mathrm{C}=\mathrm{C}$ pyrimidine), $155(\mathrm{C}=\mathrm{N}$ pyrazolone $), 154$ (C thiazole), 142-124 (C and CH phenyl rings), 89 (CH thiazole), $50\left(\mathrm{CH}\right.$ pyrazolone), 45 (CH pyrimidine), $18\left(\mathrm{CH}_{3}\right.$ pyrazolone) ppm. EI ms: m/z: $562.21\left[\mathrm{M}^{+}\right]$(67), 527 (21), 485.41 (52), 173.12 (76), 77 (61).

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-p-chlorophenyl-7-phenyl-7,9-dihydro-5H-thiazolo[3,2-a]pyrimido [4,5-d]pyrimidine-8-thione ($5 b$). Crystallized from benzene to give white crystals, yield 4.11 g (69%) mp $245-247^{\circ} \mathrm{C}$. IR (KBr): 2300 (NH), 1695 (CO pyrimidine), 1635 (CO pyrazolone), 1510 $(\mathrm{C}=\mathrm{S}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 90 \mathrm{MHz}\right): \delta=10.00(\mathrm{~s}, \mathrm{NH}$ exchangable with $\mathrm{D}_{2} \mathrm{O}$), $7.74-7.30(\mathrm{~m}, 14 \mathrm{H}$, phenyl protons), 7.10 (s, thiazole-H), 7.00 (s, pyrimidine-H), 6.92 (s , pyrazolone-H), 2.20 (s, CH_{3} pyrazolone) ppm.

8-Ethylthio-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-7-phenyl-5,7-dihydro thiazolo[3,2-a]pyrimido[4,5d]pyrimidine $\mathbf{6 a}, \mathbf{b}$. To a solution of $\mathbf{5 a}$ or $\mathbf{5 b}(10 \mathrm{mmol})$ in hot ethanol containing sodium acetate ($0.75 \mathrm{~g}, 10 \mathrm{mmol}$), ethyl iodide ($1.56 \mathrm{~mL}, 10 \mathrm{mmol}$) was added with stirring for 3 h . The solid precipitate was collected, dried, and crystallized from the proper solvent to give $\mathbf{6 a}$ and $\mathbf{6 b}$, respectively.

8-Ethylthio-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5,7-diphenyl-5,7-dihydro thiazolo [3,2-a]pyrimido[4,5-d] pyrimidine (6a). Crystallized from ethanol to give white crystals, yield $3.96 \mathrm{~g}(67 \%)$, mp $230-232^{\circ} \mathrm{C}$. IR (KBr): disappearance of (NH), 2950 (CH aliphatic), 1695 (CO pyrimidine), 1640 (CO pyrazolone) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $90 \mathrm{MHz}): \delta=8.10-7.50(\mathrm{~m}, 15 \mathrm{H}$, phenyl protons), 7.00 (s, thiazole-H), $6.90(\mathrm{~s}$, pyrimidine-H), $6.80(\mathrm{~s}$, pyrazolone-H), $4.10\left(\mathrm{q}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.20\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ pyrazolone), 1.00 (t, $J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}$) ppm; EI ms: m/z: $590.32\left[\mathrm{M}^{+}\right](49)$, 559.12 (68), 173.12 (76), 77 (61), 29 (12).

Table 2
The elemental analyses of the prepared compounds.

Compound	Formula	Elemental analyses					
			C	H	N	S	Cl
1b	$\mathrm{C}_{25} \mathrm{H}_{22} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{SCl}$	Calcd.	59.11	4.37	13.79	6.31	6.98
		Found	58.89	4.24	13.67	6.21	6.81
2a	$\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{SCI}$	Calcd.	62.90	4.89	13.58	6.22	.
		Found	62.74	4.75	13.34	6.16	-
2b	$\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{SCl}$	Calcd.	58.96	4.40	12.73	5.83	6.45
		Found	58.82	4.28	12.61	5.71	6.30
3a	$\mathrm{C}_{32} \mathrm{H}_{27} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}$	Calcd.	66.54	4.71	12.12	5.55	-
		Found	66.34	4.61	12.06	5.48	-
3b	$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{SCl}$	Calcd.	62.79	4.28	11.44	5.24	5.79
		Found	62.68	4.16	11.32	5.10	5.66
4a	$\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}$	Calcd.	60.12	4.61	21.34	6.98	-
		Found	60.01	4.46	21.21	6.87	-
4b	$\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{SCl}$	Calcd.	55.92	4.08	19.85	6.49	7.18
		Found	55.81	3.98	19.71	6.36	7.05
5a	$\mathrm{C}_{30} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$	Calcd.	64.04	3.94	14.94	11.40	-
		Found	63.91	3.72	14.81	11.65	-
5b	$\mathrm{C}_{30} \mathrm{H}_{21} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Cl}$	Calcd.	60.34	3.54	14.07	10.74	5.94
		Found	60.25	3.43	13.94	10.61	5.84
6a	$\mathrm{C}_{32} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}_{2}$	Calcd.	65.06	4.44	14.23	10.86	-
		Found	64.97	4.37	14.20	10.80	-
6b	$\mathrm{C}_{32} \mathrm{H}_{25} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Cl}$	Calcd.	61.48	4.03	13.44	10.26	5.67
		Found	61.40	3.91	13.32	10.14	5.56
7 a	$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}$	Calcd.	64.27	4.31	19.99	5.72	
		Found	64.16	4.25	19.90	5.63	-
7b	$\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{SCl}$	Calcd.	60.55	3.90	18.83	5.39	5.96
		Found	60.48	3.76	18.71	5.31	5.85
8a	$\mathrm{C}_{25} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S}$	Calcd.	60.35	3.85	19.71	6.45	-
		Found	60.29	3.78	19.64	6.36	-
8b	$\mathrm{C}_{25} \mathrm{H}_{18} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{SCl}$	Calcd.	56.44	3.41	18.43	6.03	6.66
		Found	56.36	3.35	18.32	5.93	6.57
9a	$\mathrm{C}_{29} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{4} \mathrm{~S}$	Calcd.	61.36	4.44	17.27	5.65	-
		Found	61.30	4.36	17.18	5.52	-
9b	$\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{~N}_{7} \mathrm{O}_{4} \mathrm{Cl}$	Calcd.	57.85	4.02	16.29	5.33	5.89
		Found	57.80	3.92	16.20	5.25	5.82
10a	$\mathrm{C}_{24} \mathrm{H}_{19} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S}$	Calcd.	59.37	3.94	20.19	6.60	-
		Found	59.24	3.97	20.12	6.51	-
10b	$\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S} \mathrm{Cl}$	Calcd	55.44	3.49	18.86	6.17	6.82
		Found	55.32	3.41	18.75	6.08	6.71
11a	$\mathrm{C}_{28} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}$	Calcd.	64.23	4.81	18.73	6.12	-
		Found	64.28	4.64	18.61	6.17	-
11b	$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{SCl}$	Calcd.	60.26	4.33	17.57	5.73	6.35
		Found	60.18	4.40	17.45	5.66	6.26
12a	$\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{~S}$	Calcd.	61.70	4.41	18.65	6.10	-
		Found	61.58	4.34	18.54	6.01	-
12b	$\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{~N}_{7} \mathrm{O}_{3} \mathrm{SCl}$	Calcd.	57.91	3.96	17.51	5.73	6.33
		Found	57.86	3.87	17.43	5.65	6.21
13a	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{~S}$	Calcd.	58.71	3.86	23.82	6.82	-
		Found	58.62	3.74	23.71	6.70	-
13b	$\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{8} \mathrm{O}_{2} \mathrm{SCl}$	Calcd.	54.71	3.39	22.19	6.35	7.02
		Found	54.60	3.31	22.10	6.40	6.90
14a	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{~S}$	Calcd.	62.43	4.10	18.99	7.25	-
		Found	62.34	4.01	18.87	7.14	-
14b	$\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~N}_{6} \mathrm{O}_{2} \mathrm{SCl}$	Calcd.	57.92	3.59	17.62	6.72	7.43
		Found	57.83	3.49	17.53	6.64	7.34
15a	$\mathrm{C}_{30} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}$	Calcd.	65.80	4.60	17.90	5.86	-
		Found	65.71	4.52	17.79	5.71	-
15b	$\mathrm{C}_{30} \mathrm{H}_{24} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{SCl}$	Calcd.	61.90	4.16	16.84	5.51	6.09
		Found	62.18	4.03	16.73	5.39	5.88
16a	$\mathrm{C}_{31} \mathrm{H}_{23} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{~S}$	Calcd.	66.77	4.16	17.58	5.75	-
		Found	66.66	4.11	17.47	5.63	-
16b	$\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{~N}_{7} \mathrm{O}_{2} \mathrm{SCl}$	Calcd.	62.89	3.75	16.56	5.42	5.99
		Found	62.78	3.69	16.50	5.34	5.84

March 2013 Synthesis of Some New Heterocycles Derived from Ethyl 7-Amino-3-(3-methyl-5-oxo-1-phenyl-2-
pyrazolin-4-yl)-5-aryl-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate of Biological Importance

8-Ethylthio-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-

 5-p-chlorophenyl-7-phenyl-5,7-dihydrothiazolo[3,2-a]pyrimido [4,5-d]pyrimidine ($6 \boldsymbol{b}$). Crystallized from ethanol to give yellow crystals, yield $4.06 \mathrm{~g}(65 \%)$, mp 240-242 ${ }^{\circ} \mathrm{C}$. IR (KBr): 2915 (CH aliphatic), 1695 (CO pyrimidine), 1640 (CO pyrazolone) cm^{-1}. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 90 \mathrm{MHz}$): $\delta=8.00-7.30(\mathrm{~m}, 14 \mathrm{H}$, phenyl protons), $7.00(\mathrm{~s}$, thiazole-H), $6.90(\mathrm{~s}$, pyrimidine-H), $6.80(\mathrm{~s}$, pyrazolone-H), $4.10\left(\mathrm{q}, \quad J=10 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.20\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ pyrazolone), $1.00\left(\mathrm{t}, J=10 \mathrm{~Hz}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-7-phenyl-5,7-dihydro-8-hydrazino thiazolo[3,2-a]pyrimido[4,5- d] pyrimidine $7 \mathbf{a}, \mathbf{b}$. To a solution of $\mathbf{6 a}$ or $\mathbf{6 b}(10 \mathrm{mmol})$ in pyridine (30 mL), hydrazine hydrate $98 \% ~(0.49 \mathrm{~mL}, 10 \mathrm{mmol}$) was added and the reaction mixture was refluxed for 2 h . The product thus formed was filtered-off, dried, and crystallized from the proper solvent to give $7 \mathbf{a}$ and $\mathbf{7 b}$, respectively.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5,7-diphenyl-5,7-dihydro-8-hydrazinohiazolo[3,2-a]pyrimido[4,5-d] pyrimidine (7a). Crystallized from benzene to give pale yellow crystals, yield $3.92 \mathrm{~g}(55 \%)$, mp $245-247^{\circ} \mathrm{C}$. \mathbb{R} (KBr): $3400-3150$ $\left(\mathrm{NHNH}_{2}\right), 1690$ (CO pyrimidine), 1630 (CO pyrazolone) $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 90 \mathrm{MHz}$): $\delta=10.40$ (s , NH exchangable with $\mathrm{D}_{2} \mathrm{O}$), 7.90-7.30 (m, 15H, phenyl protons), 7.10 (s, thiazole-H), $7.00\left(\mathrm{~s}\right.$, pyrimidine-H), $6.90\left(\mathrm{~s}\right.$, pyrazolone-H), $5.50\left(\mathrm{~s}, \mathrm{NH}_{2}\right.$ exchangable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.20\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ pyrazolone) ppm. EI ms: $m / z: 559.72\left[\mathrm{M}^{+}\right](71), 544.13$ (21), 483.12 (53), 329.10 (15), 173.12 (76), 77 (61).

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-p-chlorophenyl-7-phenyl-5,7-dihydro-8-hydrazinothiazolo[3,2-a] pyrimido[4,5-d]pyrimidine (7b). Crystallized from ethanol to give yellow crystals, yield $4.16 \mathrm{~g}(70 \%), \mathrm{mp} 251-253^{\circ} \mathrm{C}$. IR (KBr): 3400-3150 $\left(\mathrm{NHNH}_{2}\right), 1690$ (CO pyrimidine), 1630 (CO pyrazolone) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 90 \mathrm{MHz}$): δ $=10.40\left(\mathrm{~s}, \mathrm{NH}\right.$ exchangable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.90-7.20(\mathrm{~m}, 14 \mathrm{H}$, phenyl protons), $7.00(\mathrm{~s}$, thiazole-H), $6.90(\mathrm{~s}$, pyrimidine- H$)$, 6.81 (s, pyrazolone-H), 5.50 ($\mathrm{s}, \mathrm{NH}_{2}$ exchangable with $\mathrm{D}_{2} \mathrm{O}$), 2.20 (s, CH_{3} pyrazolone) ppm.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-7- N -formylamino-5,7-dihydro-5H-thiazolo[3,2-a]pyrimido[4,5$d]$ pyrimidine $\mathbf{8 a}, \mathbf{b}$. A mixture of $\mathbf{4 a}$ or $\mathbf{4 b}(10 \mathrm{mmol})$ with formic acid (20 mL) was refluxed for 4 h . The precipitate thus formed after cooling was collected, dried, and crystallized from the proper solvent to give $\mathbf{8 a}$ and $\mathbf{8 b}$, respectively.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-phenyl-7-N-formylamino-5,7-dihydro-5H-thiazolo[3,2-a]pyrimido[4,5-d] pyrimidine (8a). Crystallized from ethanol to give white powder, yield 3.39 g (68%), mp $215-217^{\circ} \mathrm{C}$. IR (KBr): $3350(\mathrm{NH}), 1705$ (CO formyl), 1690 (CO pyrimidine), 1645 (CO pyrazolone) $\mathrm{cm}^{-1} \cdot{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}): $\delta=10.80(\mathrm{~s}, \mathrm{NH}$ exchangable with $\mathrm{D}_{2} \mathrm{O}$), 8.51 (s , formyl-H), 7.72 (s , pyrimidineH), $7.64-7.24(\mathrm{~m}, 5 \mathrm{H}$, phenyl protons), 7.14-7.06 ($\mathrm{m}, 5 \mathrm{H}$, phenyl protons), 7.00 (s, thiazole-H), 6.90 (s, pyrimidine-H), 6.76 (s, pyrazolone-H), $2.23\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ pyrazolone) ppm. ${ }^{13} \mathrm{C}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): $\delta=170$ (CO pyrazolone), 167 $(\mathrm{C}=\mathrm{O}$ pyrimidine $), 165(\mathrm{CHO}), 163(\mathrm{CH}=\mathrm{N}$ pyrimidine $), 161$ ($\mathrm{C}=\mathrm{N}$ pyrimidine), 159 and $103(\mathrm{C}=\mathrm{C}$ pyrimidine), $155(\mathrm{C}=\mathrm{N}$ pyrazolone), 154 (C thiazole), 142-124 (C and CH phenyl rings), 89 (CH thiazole), $50(\mathrm{CH}$ pyrazolone), $45(\mathrm{CH}$ pyrimidine), $18\left(\mathrm{CH}_{3}\right.$ pyrazolone) ppm . EI ms: m/z: 497.02 $\left[\mathrm{M}^{+}\right](72), 479.01$ (49), 469.11(39), 173.12 (76), 77 (61), 28 (5), 18 (10).

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-p-chlorophenyl-7-N-formylamino-5,7-dihydro-5H-thiazolo[3,2-a] pyrimido[4,5-d]pyrimidine (8b). Crystallized from ethanol to give pale yellow crystals, yield $3.49 \mathrm{~g}(68 \%)$, mp $222-224^{\circ} \mathrm{C}$. IR (KBr): $3350(\mathrm{NH}), 1705$ (CO formyl), 1690 (CO pyrimidine), 1645 (CO pyrazolone) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 90 \mathrm{MHz}$): $\delta=10.80$ (s, NH exchangable with $\mathrm{D}_{2} \mathrm{O}$), 8.60 (s , formyl- H), 8.00 (s, pyrimidine-H), $7.60-7.20(\mathrm{~m}, 9 \mathrm{H}$, phenyl protons), 7.00 (s , thiazole- H), 6.80 (s , pyrimidine-H), 6.60 (s , pyrazolone- H), 2.30 ($\mathrm{s}, \mathrm{CH}_{3}$ pyrazolone) ppm.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-8-methyl-7-N,N-diacetylamino-5,7-dihydrothiazolo[3,2-a] pyrimido $[4,5-d]$ pyrimidine $9 \mathrm{a}, \mathrm{b}$. A mixture of $\mathbf{4 a}$ or $\mathbf{4 b}$ (10 mmol) and acetic anhydride (20 mL) was refluxed for 3 h . The reaction mixture was diluted with water and allowed to stand at room temperature for 1 h . The precipitate thus obtained was collected, dried, and crystallized from the proper solvent to give $9 a$ and $9 b$, respectively.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-phenyl-8-methyl-7-N,N-diacetylamino-5,7-dihydrothiazolo[3,2-a]pyrimido [4,5-d]pyrimidine (9a). Crystallized from ethanol to give white crystals, yield $3.92 \mathrm{~g}(69 \%)$, mp 240-242 ${ }^{\circ} \mathrm{C}$. IR (KBr): 3000-2915 (CH aliphatic), 1760-1690 (2CO acetyl), 1645 (CO pyrazolone) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=7.64-7.24(\mathrm{~m}, 5 \mathrm{H}$, phenyl protons), 7.14-7.06 (m, 5H, phenyl protons), 6.92 (s , thiazole- H), 6.80 (s , pyrimidine-H), 6.71 (s , pyrazolone- H), $2.40\left(\mathrm{~s}, 2 \mathrm{CH}_{3}\right.$), 2.20 (s, CH_{3} pyrazolone), 1.20 ($\mathrm{s}, \mathrm{CH}_{3}$ pyrimidine) $\mathrm{ppm} .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=175$ (2 CO acetyl), $170(\mathrm{CO}$ pyrazolone), $167(\mathrm{C}=\mathrm{O}$ pyrimidine), $164(\mathrm{CH}=\mathrm{N}$ pyrimidine $), 161$ ($\mathrm{C}=\mathrm{N}$ pyrimidine), 159 and $103(\mathrm{C}=\mathrm{C}$ pyrimidine), $155(\mathrm{C}=\mathrm{N}$ pyrazolone), 154 (C thiazole), 142-124 (C and CH phenyl rings), $89(\mathrm{CH}$ thiazole), 50 (CH pyrazolone), 45 (CH pyrimidine), $18\left(\mathrm{CH}_{3}\right.$ pyrazolone), $14\left(\mathrm{CH}_{3}\right.$ pyrimidine), $16\left(2 \mathrm{CH}_{3}\right.$ acetyl) ppm. EI ms: m/z: $566.96\left[\mathrm{M}^{+}\right]$(69), 524.38 (10), 481.30 (15), 173.12 (76), 77 (61).

3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-p-chlorophenyl-8-methyl-7-N,N-diacetylamino-5,7-dihydrothiazolo[3,2-alpyrimido [4,5-d] pyrimidine (9b). Crystallized from ethanol to give yellow powder, yield $4.15 \mathrm{~g}(69 \%), \mathrm{mp} 253-255^{\circ} \mathrm{C}$. IR (KBr): 3000-2915 (CH aliphatic), 1760-1690 (2CO acetyl), 1645 (CO pyrazolone) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 90 \mathrm{MHz}$): $\delta=7.60-7.20(\mathrm{~m}, 9 \mathrm{H}$, phenyl protons), 7.00 (s, thiazole-H), 6.82 (s , pyrimidine-H), 6.60 (s, pyrazolone-H), $2.40\left(\mathrm{~s}, 2 \mathrm{CH}_{3}\right), 2.26\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ pyrazolone), 1.20 ($\mathrm{s}, \mathrm{CH}_{3}$ pyrimidine) ppm.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-7-amino-7,9-dihydro-5H-thiazolo[3,2-a]-pyrimido [4,5- d]pyrimidine$\mathbf{6 , 8}$-dione 10a,b. A mixture of $\mathbf{4 a}$ or $\mathbf{4 b}$ (10 mmoles) and urea $(0.6 \mathrm{~g}, 10 \mathrm{mmol})$ was refluxed in decalin $(30 \mathrm{~mL})$ for 3 h . The solid product thus obtained on cooling was filtered off, washed with pet. ether $60-80$ and crystallized from the proper solvent to give 10 a and 10b, respectively.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-phenyl-7-amino-7,9-dihydro-5H-thiazolo [3,2-a]pyrimido[4,5-d]pyrimidine-6,8-dione (10a). Crystallized from benzene to give white crystals, yield 2.80 g (68%), mp $271-273^{\circ} \mathrm{C}$; IR (KBr): $3400\left(\mathrm{NH}_{2}\right)$, 3150 (NH), 1720-1695 (2 C=O pyrimidine), 1640 ($\mathrm{C}=\mathrm{O}$ pyrazolone) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$): $\delta=10.50$ (s, NH exchangable with $\mathrm{D}_{2} \mathrm{O}$), 9.70 ($\mathrm{s}, \mathrm{NH}_{2}$ exchangable with $\mathrm{D}_{2} \mathrm{O}$), 7.64-7.24 ($\mathrm{m}, 5 \mathrm{H}$, phenyl protons), 7.14-7.06 ($\mathrm{m}, 5 \mathrm{H}$, phenyl protons), 6.95 (s, thiazole-H), 6.85 (s , pyrimidine-H), 6.71 (s, \quad pyrazolone-H), 2.25 ($\mathrm{s}, \quad \mathrm{CH}_{3}$
pyrazolone) ppm; ${ }^{13} \mathrm{C}$ NMR (DMSO- $\left.d_{6}, 400 \mathrm{MHz}\right): \delta=170(\mathrm{CO}$ pyrazolone), $167(\mathrm{C}=\mathrm{O}$ pyrimidine $), 161(\mathrm{C}=\mathrm{N}$ pyrimidine $)$, 159 and $103(\mathrm{C}=\mathrm{C}$ pyrimidine $), 155(\mathrm{C}=\mathrm{N}$ pyrazolone $), 154$ (C thiazole), 150 ($\mathrm{C}=\mathrm{O}$ pyrimidine), $142-124$ (C and CH phenyl rings), 89 (CH thiazole), $50(\mathrm{CH}$ pyrazolone), 45 (CH pyrimidine), $18\left(\mathrm{CH}_{3}\right.$ pyrazolone) ppm. EI ms: $m / z: 484.80$ $\left[\mathrm{M}^{+}\right]$(80), 469.45 (71), 467.13 (34), 331.10 (24), 173.12 (76), 77 (61).

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-p-chlorophenyl-7-amino-7,9-dihydro-5H-thiazolo[3,2-a]pyrimido[4,5-d]pyrimidine-6,8-dione (10b). Crystallized from ethanol to give brown powder, yield 3.38 g (65%), mp $265-267^{\circ} \mathrm{C}$. IR (KBr): 3400 $\left(\mathrm{NH}_{2}\right), 3150(\mathrm{NH}), 1720-1695$ ($2 \mathrm{C}=\mathrm{O}$ pyrimidine), 1640 $\left(\mathrm{C}=\mathrm{O}\right.$ pyrazolone) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 90 \mathrm{MHz}$): $\delta=$ 10.70 (s, NH exchangable with $\mathrm{D}_{2} \mathrm{O}$), 9.70 ($\mathrm{s}, \mathrm{NH}_{2}$ exchangable with $\mathrm{D}_{2} \mathrm{O}$), 7.60-7.20 (m, 9H, phenyl protons), 7.00 (s, thiazole$\mathrm{H}), 6.90\left(\mathrm{~s}\right.$, pyrimidine-H), $6.70\left(\mathrm{~s}\right.$, pyrazolone-H), $2.20\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ pyrazolone) ppm.

4-(7-Amino-6-(3,5-dimethyl-1H-pyrazole-1-carbonyl)-5-aryl-5H-thiazolo[3,2-a]pyrimidin-3-yl)-3-methyl-1-phenyl-2-pyrazolin-5-one 11a,b. A mixture of $\mathbf{4 a}$ or $\mathbf{4 b}(10 \mathrm{mmol})$ and acetyl acetone ($1.00 \mathrm{~g}, 10 \mathrm{mmol}$) in ethanol (30 mL) was refluxed for 3 h . On cooling, the formed solid product was filtered-off, dried, and crystallized from the proper solvent to give 11a and 11b, respectively.

4-(7-Amino-6-(3,5-dimethyl-1H-pyrazole-1-carbonyl)-5-phenyl-5H-thiazolo[3,2-a]pyrimidin- 3-yl)-3-methyl-1-phenyl-2-pyrazolin-5-one (11a). Crystallized from benzene to give yellow powder, yield $3.46 \mathrm{~g}(66 \%), \mathrm{mp} 230-232^{\circ} \mathrm{C}$. IR (KBr): 3300-3100 $\left(\mathrm{NH}_{2}\right), 2960$ (CH aliphatic), 1660 (CO pyrimidine), 1640 (CO pyrazolone) cm^{-1}. ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 90 \mathrm{MHz}$): $\delta=$ $7.95-7.30$ ($\mathrm{m}, 10 \mathrm{H}$, phenyl protons), 7.20 (s, thiazole-H), 7.10 (s, pyrimidine-H), 7.00 (s, pyrazolone-H), 6.85 (s, pyrazole-H), $5.40\left(\mathrm{~s}, \mathrm{NH}_{2}\right.$ exchangable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.20\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 2.10$ (s, $2 \mathrm{CH}_{3}$ pyrazole) ppm.

4-(7-Amino-6-(3,5-dimethyl-1H-pyrazole-1-carbonyl)-5-p-chlorophenyl-5H-thiazolo[3,2-a]- pyrimidin-3-yl)-3-methyl-1-phenyl-2-pyrazolin-5-one (11b). Crystallized from benzene to give pale yellow crystals, yield $3.91 \mathrm{~g}(70 \%), \mathrm{mp} 249-250^{\circ} \mathrm{C}$. IR (KBr): 3300-3100 (NH_{2}), $2960(\mathrm{CH}$ aliphatic), $1660(\mathrm{CO}$ pyrimidine), 1640 (CO pyrazolone) cm^{-1}; ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}, $90 \mathrm{MHz}): \delta=8.00-7.40(\mathrm{~m}, 9 \mathrm{H}$, phenyl protons), 7.20 (s, thiazole-H), 7.11 (s, pyrimidine-H), 7.10 (s, pyrazolone-H), 6.90 (s, pyrazole-H), 5.40 ($\mathrm{s}, \mathrm{NH}_{2}$ exchangable with $\mathrm{D}_{2} \mathrm{O}$), $2.20\left(\mathrm{~s}, \mathrm{CH}_{3}\right), 2.10$ (s, $2 \mathrm{CH}_{3}$ pyrazole) ppm.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-7-ethoxymethyleneamino-5,7-dihydro-thiazolo $[3,2-a]$ pyrimido [4,5- d] pyrimidine 12a,b. A mixture of $\mathbf{4 a}$ or $\mathbf{4 b}(5 \mathrm{mmoles})$ and triethyl orthoformate (20 mL) was refluxed for 3 h . The solid precipitate thus formed on cooling was collected, dried, and crystallized from the proper solvent to give 12a and 12b, respectively.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-phenyl-7-ethoxymethyleneamino-5,7-dihydro-thiazolo[3,2-a]pyrimido [4,5-d]pyrimidine (12a). Crystallized from ethanol to give white needles, yield $1.81 \mathrm{~g}(69 \%), \mathrm{mp} 238-239^{\circ} \mathrm{C}$. IR (KBr): 2960 (CH aliphatic), 1680 (CO pyrimidine), 1635 (CO pyrazolone), $1580(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $\left.d_{6}, 90 \mathrm{MHz}\right): ~ \delta=7.90-7.50$ $(\mathrm{m}, 10 \mathrm{H}$, phenyl protons and $\mathrm{N}=\mathrm{CH}), 7.50(\mathrm{~s}$, pyrimidine- H$)$, 7.20 (s. thiazole-H), 7.00 (s, pyrimidine-H), 6.90 (s, pyrazolone-H), $4.00\left(\mathrm{q}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.40\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ pyrazolone), $1.3(\mathrm{t}$,
$J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}$) ppm. EI ms: $m / z: 525.05\left[\mathrm{M}^{+}\right](69), 479.16$ (42), 173.12 (76), 77 (61), 46 (12) 44.12 (5).

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-p-chlorophenyl-7-ethoxymethyleneamino-5,7-dihydro-thiazolo [3,2-a]pyrimido[4,5-d] pyrimidine (12b). Crystallized from ethanol to give white crystals, yield $1.96 \mathrm{~g}(70 \%), \mathrm{mp} 240-241^{\circ}$ C. IR (KBr): 2960 (CH aliphatic), 1680 (CO pyrimidine), 1635 (CO pyrazolone), $1580(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 90$ $\mathrm{MHz}): \delta=7.90-7.60(\mathrm{~m}, 9 \mathrm{H}$, phenyl protons and $\mathrm{N}=\mathrm{CH}$), 7.50 $(\mathrm{s}$, pyrimidine-H), $7.20(\mathrm{~s}$, thiazole-H), $7.00(\mathrm{~s}$, pyrimidine-H), 6.90 (s, pyrazolone-H), $4.00\left(\mathrm{q}, J=6.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 2.40\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ pyrazolone), 1.3 (t, $J=6.7 \mathrm{~Hz}, \mathrm{CH}_{3}$) ppm. EI ms: $m / z: 561.62$ $\left[\mathrm{M}^{+}+2\right](23), 559.53\left[\mathrm{M}^{+}\right](76), 173.12$ (76), 77 (61), 37.20 (9), 35.10 (19).

7-Amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5H-thiazolo $[3,2-a]$ pyrimidine-6-carboazide 13a,b. To a cold solution of $\mathbf{4 a}$ or $\mathbf{4 b}(10 \mathrm{mmol})$ in glacial acetic acid (30 $\mathrm{mL})$, sodium nitrite solution $(0.69 \mathrm{~g}, 10 \mathrm{mmol})$ in water $(5 \mathrm{~mL})$ was added dropwise with stirring during 10 min at room temperature. The formed precipitate was collected, dried, and crystalized from the proper solvent to give 13a and 13b, respectively.

7-Amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-phenyl-5H-thiazolo[3,2-a]- pyrimidine-6-carboazide (13a). Crystallized from benzene to give brown crystals, yield $3.38 \mathrm{~g}(72 \%)$, mp $210-212^{\circ} \mathrm{C}$. IR (KBr): 3400-3200 $\left(\mathrm{NH}_{2}\right), 2960(\mathrm{CH}$ aliphatic), at 2270 appearance of azide group $\left(\mathrm{N}_{3}\right), 1695$ (CO), 1620 (CO pyrazolone) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 90 \mathrm{MHz}$): $\delta=$ $8.00-7.30(\mathrm{~m}, 10 \mathrm{H}$, phenyl protons), 7.10 (s , thiazole-H), $7.00\left(\mathrm{~s}\right.$, pyrimidine-H), $6.90\left(\mathrm{~s}\right.$, pyrazolone-H), $5.50\left(\mathrm{~s}, \mathrm{NH}_{2}\right.$ exchangable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.30\left(\mathrm{~s}, \mathrm{CH}_{3}\right) \mathrm{ppm}$.

7-Amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-p-chlorophenyl-5H-thiazolo[3,2-a]- pyrimidine-6-carboazide (13b). Crystallized from benzene to give red crystals, yield $3.58 \mathrm{~g}(71 \%)$, mp $215-217^{\circ} \mathrm{C}$; IR (KBr): $3400,3200\left(\mathrm{NH}_{2}\right)$, 2960 (CH aliphatic), at 2270 appearance of azide group $\left(\mathrm{N}_{3}\right), 1695$ (CO), 1625 (CO pyrazolone) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 90 \mathrm{MHz}$): $\delta=8.10-7.20(\mathrm{~m}, 9 \mathrm{H}$, phenyl protons), 7.10 (s, thiazole-H), 7.00 (s, pyrimidine-H), 6.90 (s, pyrazolone-H), $5.50\left(\mathrm{~s}, \mathrm{NH}_{2}\right.$ exchangable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 2.30$ ($\mathrm{s}, \mathrm{CH}_{3}$ pyrazolone) ppm.

7-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-9-aryl-2-oxo-1,3-dihydro-9H-imidazo[4,5- d]-thiazolo [3,2-a]pyrimidine 14a,b. The carboazide $\mathbf{1 3}(5 \mathrm{mmol})$ was heated under reflux for 3 h in dry toluene (30 mL). The reaction mixture was cooled whereby a precipitated solid was formed. It was collected and crystallized from the proper solvent to give $\mathbf{1 4 a}$ and $\mathbf{1 4 b}$, respectively.

7-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-9-phenyl-2-oxo-1,3-dihydro-9H-imidazo[4,5-d]-thiazolo[3,2-a]pyrimidine (14a). Crystallized from dioxane to give yellow crystals, yield $1.61 \mathrm{~g}(73 \%)$, mp $245-246^{\circ} \mathrm{C}$. IR (KBr): 3400-3310 $(2 \mathrm{NH})$, disappearance of azide and amino groups, 1680 (CO), 1630 (CO pyrazolone) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400 \mathrm{MHz}$): $\delta=11.10\left(\mathrm{~s}, 2 \mathrm{NH}\right.$ exchangable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.64-7.24$ (m, 5 H , phenyl protons), $7.14-7.06$ ($\mathrm{m}, 5 \mathrm{H}$, phenyl protons), 6.95 (s , thiazole-H), $6.85(\mathrm{~s}$, pyrimidine-H), $6.71(\mathrm{~s}$, pyrazolone-H), $2.25\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ pyrazolone) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$: $\delta=170(\mathrm{CO}$ pyrazolone $), 161(\mathrm{C}=\mathrm{N}$ pyrimidine $), 155(\mathrm{C}=\mathrm{N}$ pyrazolone), 154 (C thiazole), 142-124 (C and CH phenyl rings), 111 and $107(\mathrm{C}=\mathrm{C}$ pyrimidine), $89(\mathrm{CH}$ thiazole), $50(\mathrm{CH}$ pyrazolone), $45\left(\mathrm{CH}\right.$ pyrimidine), $18\left(\mathrm{CH}_{3}\right.$ pyrazolone) ppm .

March 2013 Synthesis of Some New Heterocycles Derived from Ethyl 7-Amino-3-(3-methyl-5-oxo-1-phenyl-2-
pyrazolin-4-yl)-5-aryl-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate of Biological Importance

7-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-9-p-chlorophenyl-2-oxo-1,3-dihydro-9H-imidazo[4,5-d]thiazolo[3,2-a]pyrimidine ($\mathbf{1 4 b}$). Crystallized from dioxane to give pale yellow crystals, yield $1.72 \mathrm{~g}(72 \%), \mathrm{mp} 248-250^{\circ} \mathrm{C}$. IR (KBr): 3400-3300 (2NH), disappearance of azide and amino groups, 1680 (CO), 1630 (CO pyrazolone) $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 90 \mathrm{MHz}$): $\delta=11.10\left(\mathrm{~s}, 2 \mathrm{NH}\right.$ exchangable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 7.60-7.20(\mathrm{~m}, 9 \mathrm{H}$, phenyl protons), 7.00 (s, thiazole-H), 6.82 (s, pyrimidine-H), 6.60 (s, pyrazolone-H), $2.30\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ pyrazolone) ppm.

Benzaldehyde, 7 -amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5H-thiazolo[3,2-a]pyrimidine-6-carbohydrazone $\mathbf{1 5 a}, \mathbf{b}$. A mixture of $\mathbf{4 a}$ or $\mathbf{4 b}(10 \mathrm{mmol})$ and benzaldehyde (10 mmol) in ethanol (30 mL) containing few drops of piperidine was refluxed for 3 h . The solid thus formed was collected and crystallized from the proper solvent to give 15a and $\mathbf{1 5 b}$, respectively.

Benzaldehyde,7-amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-phenyl-5H-thiazolo-[3,2-a]pyrimidine-6-carbohydrazone ($15 a$). Crystallized from dioxane to give yellow powder, yield $3.83 \mathrm{~g}(70 \%), \mathrm{mp} 250-251^{\circ} \mathrm{C}$; IR (KBr): 3350-3250 (NH, NH_{2}), 1660 (CO pyrimidine), 1640 (CO pyrazolone), $1580(\mathrm{C}=\mathrm{N})$ $\mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 90 \mathrm{MHz}$): $\delta=11.10(\mathrm{~s}, \mathrm{NH}$ exchangable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 9.50(\mathrm{~s}, \mathrm{CH}), 8.00-7.40(\mathrm{~m}, 15 \mathrm{H}$, phenyl protons) $7.10(\mathrm{~s}$, thiazole-H), 6.90 (s, H-pyrimidine), 6.80 (s, pyrazolone-H), $5.40\left(\mathrm{~s}, \mathrm{NH}_{2}\right.$ exchangable with $\left.\mathrm{D}_{2} \mathrm{O}\right)$, 2.30 (s, CH_{3} pyrazolone) ppm.

Benzaldehyde,7-amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-p-chlorophenyl-5H-thiazolo[3,2-a]pyrimidine-6-carbohydrazone (15b). Crystallized from dioxane to give pale yellow crystals, yield 4.25 (73%), mp $255-257^{\circ} \mathrm{C}$; IR (KBr): 3350-3250 (NH, NH_{2}), 1660 (CO pyrimidine), 1640 (CO pyrazolone), $1580(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 90 \mathrm{MHz}$): $\delta=11.10\left(\mathrm{~s}, \mathrm{NH}\right.$ exchangable with $\left.\mathrm{D}_{2} \mathrm{O}\right), 9.50(\mathrm{~s}, \mathrm{CH}), 8.10-7.40$ ($\mathrm{m}, 14 \mathrm{H}$, phenyl protons), 7.10 (s, thiazole-H), 7.00 (s , pyrimidine- H), 6.85 (s, pyrazolone-H), $5.40\left(\mathrm{~s}, \mathrm{NH}_{2}\right.$ exchangable with $\mathrm{D}_{2} \mathrm{O}$), 2.30 ($\mathrm{s}, \mathrm{CH}_{3}$ pyrazolone) ppm .

7-Benzylideneamino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-5H-thiazolo- [3,2-a]pyrimido[4,5-d]pyrimidine 16a,b. A mixture of 15a or 15b (5 mmol), triethyl orthoformate (5 mmol), and acetic anhydride (15 mL) was refluxed for 3 h . The solid precipitate thus formed on cooling was collected, dried, and crystallized from the proper solvent to give 16a and 16b, respectively.

7-Benzylideneamino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-phenyl-5H-thiazolo [3,2-a]pyrimido[4,5-d]pyrimidine (16a). Crystallized from dioxane to give pale brown powder, yield $1.92 \mathrm{~g}(69 \%), \mathrm{mp} 262-264^{\circ} \mathrm{C}$. IR (KBr): 1680 (CO pyrimidine), 1630 (CO pyrazolone), $1580(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=8.20(\mathrm{~s}, \mathrm{CH}), 7.76(\mathrm{~s}$, pyrimidine-H),
7.64-7.06 (m, 15H, phenyl protons), 6.95 (s , thiazole- H), 6.85 (s, pyrimidine-H), 6.71 (s , pyrazolone- H), $2.25\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ pyrazolone) ppm. ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right): \delta=170(\mathrm{CO}$ pyrazolone), $167(\mathrm{C}=\mathrm{O}$ pyrimidine $), 163(\mathrm{CH}=\mathrm{N}$ pyrimidine $)$, 161 ($\mathrm{C}=\mathrm{N}$ pyrimidine), 159 and 103 ($\mathrm{C}=\mathrm{C}$ pyrimidine), 157 $(\mathrm{N}=\mathrm{CH}), 155(\mathrm{C}=\mathrm{N}$ pyrazolone), 154 (C thiazole), 142-124 (C and CH phenyl rings), 89 (CH thiazole), $50(\mathrm{CH}$ pyrazolone), $45\left(\mathrm{CH}\right.$ pyrimidine), $18\left(\mathrm{CH}_{3}\right.$ pyrazolone) ppm .

7-Benzylideneamino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-p-chlorophenyl-5H-thiazolo[3,2-a]pyrimido[4,5-d] pyrimidine (16b). Crystallized from dioxane to give yellow powder, yield $2.07 \mathrm{~g}(70 \%), \mathrm{mp} 259-261^{\circ} \mathrm{C}$. IR (KBr): 1680 (CO pyrimidine), 1630 (CO pyrazolone), $1580(\mathrm{C}=\mathrm{N}) \mathrm{cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 90 \mathrm{MHz}$): $\delta=8.30(\mathrm{~s}, \mathrm{CH}), 7.78(\mathrm{~s}$, pyrimidine$\mathrm{H})$, $7.67-7.10(\mathrm{~m}, 14 \mathrm{H}$, phenyl protons), 7.00 (s , thiazole- H), 6.82 (s, pyrimidine-H), $6.60\left(\mathrm{~s}\right.$, pyrazolone-H), $2.30\left(\mathrm{~s}, \mathrm{CH}_{3}\right.$ pyrazolone) ppm.

Acknowledgments. The authors are grateful to Assiut University Mycological Center (AUMC) for biological analyses.

REFERENCES AND NOTES

[1] Aly, A. A. J Heterocycl Chem 2009, 45, 993.
[2] Kulakov, I. V. Russ J Org Chem 2009, 45, 1262.
[3] Kulakov, I. V. Chem Heterocycl Comp 2009, 45, 1019.
[4] Kulakov, I. V.; Nurkenov, O. A.; Turdybekov, D. M.; Issabaeva, G. M.; Mahmutova, A.S.; Turdybekov, K. M. Chem Heterocyclic Compds 2009, 45, 1573.
[5] Sayed, H. H.; Shamroukh, A. H.; Rashad, A. E. Acta Pharm 2006, 56, 231.
[6] Mahmoud, M. R.; El-Shahawi, M. M. Phosphorus Sulfur Silicon 2008, 183, 3097.
[7] Quan, Z. J.; Zhang, Z.; Wang, J. K.; Wang, X. C.; Liu, Y. J.; Ji, P.Y. Heteroatom Chem 2008, 19, 149.
[8] Kurbanova, M. M. Russ J Org Chem 2006, 42, 1871.
[9] Youssef, M. M.; Mohamed, S. F.; Kotb, E. R.; Salama, M. A. World J Chem 2009, 4, 149.
[10] Zhi, H.; Chen, L.; Zhang, L.; Liu, S.; Wan, D. C. C.; Lin, H.; Hu, C. Arkivoc 2008, 13, 266.
[11] Zhi, H.; Chen, L.; Zhang, L.; Liu, S.; Wan, D. C. C.; Lin, H.; Hu, C. Chem Res Chinese Univ 2009, 25, 332.
[12] Awadallah, F. M. Sci Pharm 2008, 76, 415.
[13] Al Thebeiti, M. S. Boll Chim Farm 2001, 140, 221.
[14] Khobragade, C. N.; Bodade, R. G.; Dawane, B. S.; Konda, S. G.; Khandare, N. T. J Enzyme Inhib Med Chem 2010, 25, 615.
[15] Alam, O.; Khan, S. A.; Siddiqui, N.; Ahsan, W. Med Chem Res 2009, 19, 1245.
[16] Youssef, M. S. K.; Ahmed, R. A.; Abbady, M. S.; Abd El Mohsen, A. A.; Omar, A. A.; Monatsh Chem 2008, 139, 55.

Compound Details
Structure Search

Compound Details
Structure Search

3

Compound Details
Structure Search

1a

Compound Details
Structure Search

2a

Compound Details
Structure Search

Compound Details
Structure Search

1b

Compound Details
Structure Search

2b

Compound Details
Structure Search

3b

Compound Details
Structure Search

Compound Details
Structure Search

Compound Details Structure Search

Compound Details

Compound Details
Structure Search

Compound Details
Structure Search

Compound Details
Structure Search

4b

Compound Details
Structure Search

5b

Compound Details Structure Search

6b

Compound Details
Structure Search

Compound Details Structure Search

Compound Details
Structure Search

7b

Compound Details Structure Search

Compound Details
Structure Search

9b

Compound Details
Structure Search

Compound Details
Structure Search

Compound Details
Structure Search

12

Compound Details
Structure Search

10a

Compound Details
Structure Search

11a

Compound Details
Structure Search

12a

Compound Details
Structure Search

10b

Compound Details
Structure Search

11b

Compound Details Structure Search

12b

Compound Details
Structure Search

Compound Details
Structure Search

Compound Details
Structure Search

15

Compound Details
Structure Search

13a

Compound Details
Structure Search

14a

Compound Details
Structure Search

15a

Compound Details
Structure Search

13b

Compound Details
Structure Search

14b

Compound Details
Structure Search

15b

Compound Details
Structure Search

Compound Details
Structure Search

16a

16b

Compound Details
Structure Search

