Synthesis of Some New Heterocycles Derived from Ethyl 7-Amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5*H*thiazolo[3,2-*a*]pyrimidine-6-carboxylate of Biological Importance

Mohamed Salah K. Youssef,* Mohamed S. Abbady, Ragaa A. Ahmed, and Ahmed A. Omar

Department of Chemistry, Faculty of Science, Assiut University, Assiut 71516, Egypt *E-mail: salah_kamel2000@yahoo.com Received August 7, 2010 DOI 10.1002/jhet.735 Published online 20 March 2013 in Wiley Online Library (wileyonlinelibrary.com).

Ethyl 7-amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5*H*-thiazolo[3,2-*a*]pyrimidine-6-carboxylate was synthesized by the reaction of 4-(2-aminothiazol-4-yl)-3-methyl-5-oxo-1-phenyl-2-pyrazoline with arylidene ethyl cyanoacetate and it transformed to related fused heterocyclic systems *via* reaction with various reagents. The biological activities of these compounds were evaluated.

J. Heterocyclic Chem., 50, 179 (2013).

INTRODUCTION

The formation of a new fused heterocyclic ring is an important task for heterocyclic chemistry from various points of view. The reactions of thiazolo[3,2-*a*]pyrimidines have attracted the attention of many chemists and used them in the synthesis of different heterocycles [1–15] possessing biological [10–14] and medicinal activities [15]. These observations in continuation with our general interest in these compounds led us to examine the chemistry of pyrazolinyl thiazolopyrimidine carboxylate to be used as starting material for the synthesis of novel thiazolopyrimidines and thiazolopyrimidopyrimidines bearing pyrazolone moiety, which have biological activities.

RESULTS AND DISCUSSION

This investigation was directed toward the synthesis of novel pyrazolinyl thiazolopyrimidine and pyrazolinyl thiazolopyrimidopyrimidine derivatives. We report herein reactions of ethyl 7-amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5*H*-thiazolo[3,2-*a*]pyrimidine-6-carboxylate **1a,b** to synthesize new compounds containing both pyrazolone, thiazole and pyrimidine moieties, and evaluate their biological activities. Thus reaction of compound **1a,b** with acetyl and/or benzoyl chloride gave the corresponding acetyl- or benzoyl derivatives 7-acetylamino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-arylthiazolo [3,2-*a*]pyrimidine **2a,b** and/or 7-benzoylamino-6-carboethoxy-

3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-arylthiazolo [3,2-a]pyrimidine **3a,b**. With hydrazine hydrate, **1a,b** gave the corresponding carbohydrazide derivatives 7-amino-3-(3methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5H-thiazolo [3,2-*a*]pyrimidine-6-carbohydrazide **4a**,**b**. Interaction of **1a**,**b** with phenyl isothiocyanate gave the fused tricyclic compounds 3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-7-phenyl-7,9-dihydro-5H-thiazolo[3,2-a]pyrimido [4,5-d]pyrimidine-8-thione **5a**,**b**, which were alkylated with ethyl iodide to give 8-ethylthio-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-7-phenyl-5,7dihydrothiazolo[3,2-*a*]pyrimido[4,5-*d*]pyrimidine **6a**,**b**. Reaction of compound 6a,b with hydrazine hydrate afforded 3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-7-phenyl-5,7-dihydro-8-hydrazinothiazolo-[3,2-a]pyrimido [4,5-*d*]pyrimidine 7a,b (Scheme 1).

The *o*-amino carbohydrazide function of compound **4a**, **b** was exploited to synthesize further fused pyrimidine derivatives. Thus, reaction of **4a**,**b** with formic acid, acetic anhydride, and/or urea afforded 3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-7-*N*-formylamino-5,7-dihydro -5*H*-thiazolo[3,2-*a*]pyrimido[4,5-*d*]pyrimidine **8a**,**b**, 3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-8-methyl-7-*N*,*N*-diacetylamino-5,7-dihydrothiazolo [3,2-*a*]pyrimido[4,5-*d*]pyrimidine **9a**,**b**, and 3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-7-amino-7,9-dihydro-5*H*-thiazolo[3,2-*a*]pyrimido[4,5-*d*]pyrimidine **9a**,**b**, and 3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-7-amino-7,9-dihydro-5*H*-thiazolo[3,2-*a*]pyrimido[4,5-*d*]pyrimidine **10a**,**b** respectively.

Reaction of carbohydrazide compound **4a,b** with acetylacetone or triethyl orthoformate gave 4-(7-amino-6-(3,5-dimethyl-1*H*-pyrazole-1-carbonyl)-5-aryl-5*H*-thiazolo [3,2-*a*]pyrimidin-3-yl)-3-methyl-1-phenyl-2-pyrazolin-5-one **11a,b** or 3-(3-methyl-5-oxo-1-phenyl-2-pyraz-olin-4-yl)-6-oxo-5-aryl-7-ethoxymethyleneamino-5,7-dihydro-5*H*-thiazolo [3,2-*a*]pyrimido[4,5-*d*]pyrimidine **12a,b** (Scheme 2).

Also, reaction of **4a,b** with nitrous acid gave 7-amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5*H*thiazolo[3,2-*a*]pyrimidine-6-carboazide **13a,b**, which refluxed with toluene underwent Curtius rearrangement to give 7-(3methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-9-aryl-2-oxo-1,3-dihydro-9*H*-imidazo[4,5-*d*]thiazolo[3,2-*a*]pyrimidine **14a,b**.

Condensation of **4a,b** with benzaldehyde in the presence of a catalytic amount of piperidine gave benzaldehyde,7amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5*H*-thiazolo[3,2-*a*]- pyrimidine-6-carbohydrazone **15a,b**, which reacted with triethyl orthoformate to give 7benzylideneamino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-5*H*-thiazolo[3,2-*a*]pyrimido-[4,5-*d*] pyrimidine **16a,b** (Scheme 3).

The structure of new compounds was confirmed on the basis of elemental analyses and spectral data (¹H NMR, ¹³C NMR, IR, and MS).

The biocidal activity of the synthesized compounds was tested against Gram-positive and Gram-negative bacteria as well as against yeast-like and filamentous fungi (Table 1). All microbes are potentially pathogenic especially for debilitated, malnourished, or immunosuppressed individuals. Different compounds showed varying antimicrobial action depending on the microorganism species and the compound itself. Compounds 2b, 4b, 5a, and 8a proved to be excellent candidates as antibacterial agents being able to inhibit all bacterial species tested. Staphylococcus aureus was the most sensitive organism being inhibited with ≤ 2.5 mg/mL of these compounds. Compounds 3a, 6b, 7a, 9a, and 10b were also effective but often at higher concentrations ranging from 10-20 mg/mL. The rest of the tested compounds showed narrower spectrum of antibacterial activity.

Regarding the antifungal action, compounds **3a**, **4b**, **8a**, **8b**, and **9a** were inhibitory to most or all tested fungi with MICs ≤ 20 mg/mL. *Geotrichum candidum* (frequently reported to cause geotrichosis in human and animals) was sensitive to 12 out of the 20 compounds tested. *Aspergillus flavus* (a famous allergenic, pathogenic, and toxigenic mold) showed sensitivity to 7 compounds and was markedly inhibited by compound **8b** with MIC 10 mg/mL and high sensitive to **9a** with MIC 2.5 mg/mL. *Candida* March 2013 Synthesis of Some New Heterocycles Derived from Ethyl 7-Amino-3-(3-methyl-5-oxo-1-phenyl-2pyrazolin-4-yl)-5-aryl-5*H*-thiazolo[3,2-*a*]pyrimidine-6-carboxylate of Biological Importance

 $Ar = C_6H_5, C_6H_4-CI (p)$

albicans (cause of candidosis in humans and animals) and *Scopulariopsis brevicaulis* (often reported as a cause of nail infections) were also inhibited by some compounds as shown in Table 1. *Trichophyton rubrum* (usually involved in skin and nail infections) was successfully inhibited by compounds **3a**, **8b**, and **9a** at MIC of 20 mg/mL. *Fusarium oxysporum* (one of famous plant pathogens) was also sensitive to compounds **3a**, **4b**, **5a**, and **8b** (MICs between 10–20 mg/mL).

CONCLUSIONS

This investigation was directed toward the synthesis of novel pyrazolinyl thiazolopyrimidine and pyrazolinyl thiazolopyrimidopyrimidine derivatives by the reaction of amino ester derivatives with various reagents. The synthesized compounds were tested against some strains of bacteria and fungi and some of them exhibit antimicrobial activity.

EXPERIMENTAL

Melting points were determined on APP. Digital ST 15 melting point apparatus and are uncorrected. Elemental analyses (C, H, N, S) were conducted using a Vario EL C, H, N, S Analyzer; their results were found to be in good agreement ($\pm 0.3\%$) with the calculated values. The IR spectra were obtained on a Pye-Unicam SP 3-100 spectrophotometer using the KBr disc technique (v_{max} in cm¹). ¹H NMR spectra were recorded on EM 90 NMR spectrometer, and a varian ¹H-Gemini 400 spectrometer with chemical shifts expressed in δ ppm using TMS as the internal reference.¹³C NMR spectra were obtained on a varian ¹H-Gemini 400 spectrometer. The mass spectra were run on JOEL JMS 600 spectrometer.

7-Amino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-phenyl-5H-thiazolo[3,2-a] pyrimidine [16] (1a). A mixture of 4-(2-aminothiazol-4-yl)-3-methyl-5-oxo-1-phenyl-2-pyrazoline (10 mmol) and benzylidene ethyl cyanoacetate (10 mmol) in ethanol (30 mL) and piperidine (five drops) was refluxed for 10 h. The reaction mixture was poured into cold water, and the solid precipitate was collected, dried, and crystallized from toluene to give **1a**.

7-Amino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-pchlorophenyl-5H-thiazolo[3,2-a]pyrimidine (1b). A mixture of 4-(2-aminothiazol-4-yl)-3-methyl-5-oxo-1-phenyl-2-pyrazoline (10 mmol) and p-chlorobenzylidene ethyl cyanoacetate (10 mmol) in ethanol (30 mL) and piperidine (five drops) was refluxed for 10 h. The reaction mixture was poured into cold water and the solid precipitate was collected, dried, and crystallized from toluene to give pale yellow crystals, yield 3.65 g (72%), mp 286-288°C; IR (KBr): 3100-3250 (NH₂), 2915 (CH aliphatic), 1710 (CO ester), 1640 (CO pyrazolone) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 7.64–7.24 (m, 5H, phenyl protons), 7.15-7.00 (m, 4H, phenyl protons), 6.90 (s, thiazole-H), 6.70 (s, pyrimidine-H), 6.60 (s, pyrazolone-H), 5.40 (s, NH₂ exchangable with D_2O), 4.19 (q, J = 7.00 Hz, CH₂), 2.25 (s, pyrazolone CH₃), 1.20 (t, J = 7.00Hz, CH₃) ppm. 13 C NMR (CDCl₃, 400 MHz): δ = 170 (CO pyrazolone), 167 (CO ester), 162 (C=N pyrimidine), 159 and 105 (C=C

pyrimidine), 157 (C=N pyrazolone), 154 (C thiazole), 141–127 (C and CH phenyl rings), 89 (CH thiazole), 60 (CH₂ ethyl), 50 (CH pyrazolone), 45 (CH pyrimidine), 18 (CH₃ pyrazolone), 14 (CH₃ ethyl) ppm. EI ms: m/z = 509.38 [M⁺+2] (15), 506.89 [M⁺] (49), 473.01(35), 456.51 (24), 444.14 (41), 387.01(40), 316.12 (51), 271.92 (19), 174.00 (71), 37.05 (11), 35.27 (17).

7-Acetylamino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5H-thiazolo [**3,2-***a*]**pyrimidine 2a,b.** A mixture of **1a** or **1b** (10 mmol) and acetyl chloride (5 mL) in pyridine (15 mL) was refluxed for 3 h. The reaction mixture was cooled, poured into cold water, and the solid separated product was filtered off to give **2a** and **2b**, respectively.

7-Acetylamino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2pyrazolin-4-yl)-5-phenyl-5H-thiazolo [3,2-a]pyrimidine (2a). Crystallized from benzene to give white crystals, yield 3.86 g (72%), mp 210–212°C. IR (KBr): 3100–3250 (NH₂), 2915 (CH aliphatic), 1710 (CO ester), 1685 (CO acetyl), 1640 (CO pyrazolone) cm⁻¹. ¹H NMR (CDCl₃, 90 MHz): δ = 8.30 (s, NH exchangable with D₂O), 7.70–7.20 (m, 10H, phenyl protons), 7.00 (s, thiazole-H), 6.90 (s, pyrimidine-H), 6.80 (s, pyrazolone-H), 4.10 (q, *J* = 6.70 Hz, CH₂), 3.20 (s, CH₃ acetyl), 2.30 (s, pyrazolone-CH₃), 1.3 (t, *J* = 6.70 Hz, CH₃) ppm.

7-Acetylamino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2pyrazolin-4-yl)-5-p-chlorophenyl-5H-thiazolo[3,2-a]pyrimidine (2b). Crystallized from benzene to give white powder, yield 3.74g (68%), mp 219–221°C. IR (KBr): 3100–3250 (NH₂), 2915 (CH aliphatic), 1710 (CO ester), 1685 (CO acetyl), 1640 (CO pyrazolone) cm⁻¹. ¹H NMR (DMSO-*d*₆, 90 MHz): $\delta = 8.20$ (s, NH exchangable with D₂O), 7.70–7.40 (m, 9H, phenyl protons), 7.00 (s, thiazole-H), 6.90 (s, pyrimidine-H), 6.80 (s, pyrazolone-H), 4.10 (q, *J* = 10 Hz, CH₂), 3.20 (s, CH₃ acetyl), 2.30 (s, CH₃ pyrazolone), 1.3 (t, *J* = 10 Hz, CH₃) ppm.

7-Benzoylamino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5H-thiazolo [3,2-*a*]pyrimidine 3a,b. A mixture of 1a or 1b (10 mmol) and benzoyl chloride (5 mL) in

pyridine (15 mL) was refluxed for 3 h. The reaction mixture was cooled and the solid product thus separated was filtered off, treated with pet. ether (60–80°C) and crystallized from the proper solvent to give 3a and 3b, respectively.

7-Benzoylamino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2pyrazolin-4-yl)-5-phenyl-5H-thiazolo[3,2-a]pyrimidine (3a). Crystallized from ethanol to give pale brown powder, yield 4.04 g (70%), mp 215–217°C. IR (KBr): 3250 (NH exchangable with D₂O), 2915 (CH aliphatic), 1710 (CO ester), 1690 (CO benzoyl), 1640 (CO pyrazolone) cm⁻¹. ¹H NMR (DMSO-d₆, 90MHz): δ = 7.90 (s, NH exchangable with D₂O), 7.70–7.10 (m, 15H, phenyl protons), 7.00 (s, thiazole-H), 6.90 (s, pyrimidine-H), 6.80 (s, pyrazolone-H), 4.00 (q, J = 6.70 Hz, CH₂ ester), 2.30 (s, pyrazolone-CH₃), 1.20 (t, J = 6.70 Hz, CH₃ ester) ppm.

7-Benzoylamino-6-carboethoxy-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-p-chlorophenyl-5H-thiazolo[3,2-a]pyrimidine (3b). Crystallized from ethanol to give red powder, yield 4.28 g (70%), mp 200–202°C. IR (KBr): 3250 (NH), 2915 (CH aliphatic), 1710 (CO ester), 1690 (benzoyl), 1640 (pyrazolone) cm⁻¹. ¹H NMR (DMSO- d_6 , 90MHz): δ = 7.90 (s, NH exchangable with D₂O), 7.70–7.20 (m, 14H, phenyl protons), 7.00 (s, thiazole-H), 6.90 (s, pyrimidine-H), 6.80 (s, pyrazolone-H), 4.00 (q, *J* = 6.60 Hz, CH₂ ester), 2.30 (s, CH₃-pyrazolone), 1.20 (t, *J* = 6.60 Hz, CH₃ ester) ppm.

7-Amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5H-thiazolo[3,2-a]pyrimidine-6-carbohydrazide 4a,b. A mixture of **1a** or **1b** (10 mmol) and hydrazine hydrate 98% (1.5 mL, 10 mmol) was refluxed for 2 h. The reaction mixture was cooled, and the solid thus formed was collected and crystallized from the proper solvent to give **4a** and **4b**, respectively.

7-Amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-phenyl-5H-thiazolo[3,2-a] pyrimidine-6-carbohydrazide (4a). Crystallized from ethanol to give white crystals, yield 3.08 g (67%), mp 270–272°C. ir (KBr): 3250–3450 (NHNH₂, NH₂), 1680 (CO carbohydrazide), 1635 (CO pyrazolone) cm^{-1.} ¹H NMR (CDCl₃,

March 2013	Synthesis of Some New Heterocycles Derived from Ethyl 7-Amino-3-(3-methyl-5-oxo-1-phenyl-2-	183
	pyrazolin-4-yl)-5-aryl-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate of Biological Importance	

	2a	2b	3a	3b	4a	4b	5a	5b	6a	6b	7a	7b	8 a	8b	9a	9b	10a	10b	11a	11b		Ref
Bacteria																				_		
Bacillas cereus	10	20	20	10	_	1.25	20	_	_	20	_	10	20	_	20	_	20	20	_	_		0.25
(Gram positive)																						
Staphylococcus aureus	-	0.25	10	-	-	2.5	2.5	-	-	2.5	-	_	0.25	2.5	0.25	-	-	20	-	-		0.12
(Gram positive)																						
Pseudomonas aeruginosa	-	20	_	-	-	2.5	20	_	20		20	_	20	-	20	_	-	20	-	-	5	
(Gram negative)																						
Serratia marcescens	20	2.5	20	-	-	10	20	-	-	10	20	10	10	20	_	-	-	20	20	20		1.2
(Gram negative)																						
Escherichia coli	-	10	20	-	20	2.5	20	20	20	_	20	_	20	-	20	-	20	-	-	-		1.2
(Gram negative)																						
Fungi																						
Geotrichum candidum	-	-	20	-	-	10	-	-	-	20	-	_	_	20	10	20	20	20	20	20		2.5
Candida albicans	20	-	20	20	-	10	-	20	_	-	-	_	20	20	_	_	-	-	-	-		2.5
Fusarium oxysporum	-	-	20	-	-	10	20	-	-	_	-	_	_	-	20	-	-	-	-	-		2.5
Aspergillus flavus	-	-	-	-	-	20	20	-	-	20	-	_	20	10	2.5	-	-	20	-	-		2.5
Scopulariopsis brevicaulis	20	-	-	-	-	10	-	-	-	-	-	-	20	10	20	-	-	-	-	-		2.5
Trichophyton rubrum	_	-	20	_	_	_	_	_	_	_	_	_	_	20	20	_	_	_	_	_		2.5

 Table 1

 The minimum inhibitory concentrations of the compounds tested (mg/mL).

^{*}Ref. = Reference drugs = (chloramphenicol as antibacterial and clotrimazole as antifungal).

(-) = No antimicrobial action.

400 MHz): δ = 9.50 (s, NH exchangable with D₂O), 7.64–7.24 (m, 5H, phenyl protons), 7.19 (s, NH₂ exchangable with D₂O), 7.14–7.06 (m, 5H, phenyl protons), 6.90 (s, thiazole-H), 6.70 (s, pyrimidine-H), 6.60 (s, pyrazolone-H), 5.39 (s, NH₂ pyrimidine exchangable with D₂O), 2.21 (s, CH₃ pyrazolone) ppm. ¹³C NMR (CDCl₃, 400 MHz): δ 170 (CO pyrazolone), 164 (CONH), 162 (C=N pyrimidine), 157 and 103 (C=C pyrimidine), 155 (C=N pyrazolone), 154 (C thiazole), 142–124 (C and CH phenyl rings), 89 (CH thiazole), 50 (CH pyrazolone), 45 (CH pyrimidine), 18 (CH₃ pyrazolone) ppm. EI ms: *m/z*: 458.79 [M⁺] (67), 452.12 (24), 431.40 (23), 382.32 (42), 285.90 (59), 173 (71).

7-Amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-pchlorophenyl-5H-thiazolo[3,2-a]-pyrimidine-6-carbohydrazide (4b). Crystallized from benzene to give pale yellow crystals, yield 3.19 g (65%), mp: 262–263°C. IR (KBr): 3250– 3450 (NHNH₂, NH₂), 1680 (CO carbohydrazide), 1635 (CO pyrazolone) cm⁻¹. ¹H NMR (DMSO- d_6 , 90 MHz): δ = 9.30 (s, NH exchangable with D₂O), 7.73–7.29 (m, 9H, phenyl protons), 7.19 (s, NH₂ exchangable with D₂O), 7.05 (s, thiazole-H), 6.90 (s, pyrimidine-H), 6.80 (s, pyrazolone-H), 5.39 (s, NH₂ pyrimidine exchangable with D₂O), 2.3 (s, CH₃ pyrazolone) ppm.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-7phenyl-7,9-dihydro-5*H***-thiazolo-[3,2-***a*]**pyrimido**[**4,5-***d*]**pyrimidine-8-thione 5a,b.** A mixture of **1 a,b** (10 mmol) and phenyl isothiocyanate (1.4 g, 10 mmol) in pyridine (30 mL) was refluxed for 8 h. The cooled reaction mixture was poured into ice water mixture, acidified with acetic acid, and the precipitated solid was collected and crystallized from the proper solvent to give **5a** and **5b**, respectively.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5,7-diphenyl-7,9-dihydro-5H-thiazolo- [3,2-a]pyrimido[4,5-d]pyrimidine-8-thione (5a). Crystallized from benzene to give pale green powder, yield 3.66 g (65%), mp 237–239°C. IR (KBr): 3250 (NH), 1695 (CO pyrimidine), 1635 (CO pyrazolone), 1510 (C=S) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): $\delta = 10.00$ (s, NH exchangable with D₂O), 7.64–7.24 (m, 10H, phenyl protons), 7.14–7.06 (m,

5H, phenyl protons), 6.90 (s, thiazole-H), 6.80 (s, pyrimidine-H), 6.75 (s, pyrazolone-H), 2.20 (s, CH₃ pyrazolone) ppm. ¹³C NMR (CDCl₃, 400 MHz): $\delta = 178$ (C=S pyrimidine), 170 (CO pyrazolone), 167 (C=O pyrimidine), 162 (C=N pyrimidine), 159 and 103 (C=C pyrimidine), 155 (C=N pyrazolone), 154 (C thiazole), 142–124 (C and CH phenyl rings), 89 (CH thiazole), 50 (CH pyrazolone), 45 (CH pyrimidine), 18 (CH₃ pyrazolone) ppm. EI ms: *m/z*: 562.21[M⁺] (67), 527 (21), 485.41 (52), 173.12 (76), 77 (61).

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-pchlorophenyl-7-phenyl-7,9-dihydro-5H-thiazolo[3,2-a]pyrimido [4,5-d]pyrimidine-8-thione (5b). Crystallized from benzene to give white crystals, yield 4.11g (69%) mp 245–247°C. IR (KBr): 2300 (NH), 1695 (CO pyrimidine), 1635 (CO pyrazolone), 1510 (C=S) cm⁻¹. ¹H NMR (CDCl₃, 90 MHz): δ = 10.00 (s, NH exchangable with D₂O), 7.74–7.30 (m, 14H, phenyl protons), 7.10 (s, thiazole-H), 7.00 (s, pyrimidine-H), 6.92 (s, pyrazolone-H), 2.20 (s, CH₃ pyrazolone) ppm.

8-Ethylthio-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6oxo-5-aryl-7-phenyl-5,7-dihydro thiazolo[3,2-*a*]pyrimido[4,5*d*]pyrimidine 6a,b. To a solution of 5a or 5b (10 mmol) in hot ethanol containing sodium acetate (0.75 g, 10 mmol), ethyl iodide (1.56 mL, 10 mmol) was added with stirring for 3 h. The solid precipitate was collected, dried, and crystallized from the proper solvent to give 6a and 6b, respectively.

8-Ethylthio-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6oxo-5,7-diphenyl-5,7-dihydro thiazolo [3,2-a]pyrimido[4,5-d] pyrimidine (6a). Crystallized from ethanol to give white crystals, yield 3.96 g (67%), mp 230–232°C. IR (KBr): disappearance of (NH), 2950 (CH aliphatic), 1695 (CO pyrimidine), 1640 (CO pyrazolone) cm⁻¹. ¹H NMR (CDCl₃, 90 MHz): δ = 8.10–7.50 (m, 15H, phenyl protons), 7.00 (s, thiazole-H), 6.90 (s, pyrimidine-H), 6.80 (s, pyrazolone-H), 4.10 (q, J = 6.7Hz, CH₂), 2.20 (s, CH₃ pyrazolone), 1.00 (t, J = 6.7Hz, CH₃) ppm; EI ms: m/z: 590.32 [M⁺] (49), 559.12 (68), 173.12 (76), 77 (61), 29 (12).

Compound		Elemental analyses											
	Formula		С	Н	Ν	S	Cl						
1b	C25H22N5O3SC1	Calcd.	59.11	4.37	13.79	6.31	6.98						
2a	C ₂₇ H ₂₄ N ₅ O ₄ SCI	Found Calcd.	58.89 62.90	4.24 4.89	13.67 13.58	6.21 6.22	6.81						
		Found	62.74	4.75	13.34	6.16	-						
2b	$\mathrm{C}_{27}\mathrm{H}_{25}\mathrm{N}_{5}\mathrm{O}_{4}\mathrm{SCl}$	Calcd. Found	58.96 58.82	4.40 4.28	12.73 12.61	5.83 5.71	6.45 6.30						
3a	C ₃₂ H ₂₇ N ₅ O ₄ S	Calcd.	66.54	4.71	12.12	5.55	-						
21		Found	66.34	4.61	12.06	5.48	-						
3b	$C_{32}H_{26}N_5O_4SCl$	Calcd. Found	62.79 62.68	4.28 4.16	11.44 11.32	5.24 5.10	5.79 5.66						
4a	C23H21N7O2S	Calcd.	60.12	4.61	21.34	6.98	-						
		Found	60.01	4.46	21.21	6.87	_						
4b	$C_{23}H_{20}N_7O_2SCl$	Calcd. Found	55.92 55.81	4.08 3.98	19.85 19.71	6.49 6.36	7.18 7.05						
5a	$C_{30}H_{22}N_6O_2S_2$	Calcd.	64.04	3.94	14.94	11.40	-						
		Found	63.91	3.72	14.81	11.65	-						
5b	$C_{30}H_{21}N_6O_2S_2Cl$	Calcd.	60.34	3.54	14.07	10.74	5.94						
6a	C ₃₂ H ₂₆ N ₆ O ₂ S ₂	Found Calcd.	60.25 65.06	3.43 4.44	13.94 14.23	10.61 10.86	5.84						
Ud	C321126116O252	Found	64.97	4.37	14.20	10.80	_						
6b	$C_{32}H_{25}N_6O_2S_2Cl$	Calcd.	61.48	4.03	13.44	10.26	5.67						
79		Found	61.40	3.91	13.32	10.14	5.56						
7a	$C_{30}H_{24}N_8O_2S$	Calcd. Found	64.27 64.16	4.31 4.25	19.99 19.90	5.72 5.63	_						
7b	C30H23N8O2SCl	Calcd.	60.55	4.23	18.83	5.39	5.96						
	- 5025- 18 - 24	Found	60.48	3.76	18.71	5.31	5.85						
8a	$C_{25}H_{19}N_7O_3S$	Calcd.	60.35	3.85	19.71	6.45	_						
9 L		Found Calcd.	60.29 56.44	3.78 3.41	19.64 18.43	6.36 6.03	- 6.66						
8b	C ₂₅ H ₁₈ N ₇ O ₃ SCl	Found	56.36	3.35	18.43	5.93	6.57						
9a	C29H25N7O4S	Calcd.	61.36	4.44	17.27	5.65	-						
9b		Found	61.30	4.36	17.18	5.52	-						
	C29H24N7O4Cl	Calcd.	57.85	4.02	16.29	5.33	5.89						
10a	C24H19N7O3S	Found Calcd.	57.80 59.37	3.92 3.94	16.20 20.19	5.25 6.60	5.82						
100	02411917/030	Found	59.24	3.97	20.12	6.51	_						
10b	C24H18N7O3S Cl	Calcd	55.44	3.49	18.86	6.17	6.82						
11	C H N O C	Found	55.32	3.41	18.75	6.08	6.71						
11a	$C_{28}H_{25}N_7O_2S$	Calcd. Found	64.23 64.28	4.81 4.64	18.73 18.61	6.12 6.17	_						
11b	C ₂₈ H ₂₄ N ₇ O ₂ SCl	Calcd.	60.26	4.33	17.57	5.73	6.35						
		Found	60.18	4.40	17.45	5.66	6.26						
12a	$C_{27}H_{23}N_7O_3S$	Calcd.	61.70	4.41	18.65	6.10	-						
12b	C27H22N7O3SC1	Found Calcd.	61.58 57.91	4.34 3.96	18.54 17.51	6.01 5.73	6.33						
120	02/112211/03501	Found	57.86	3.87	17.43	5.65	6.21						
13a	$C_{23}H_{18}N_8O_2S$	Calcd.	58.71	3.86	23.82	6.82	-						
101		Found	58.62	3.74	23.71	6.70	-						
13b	$C_{23}H_{17}N_8O_2SCl$	Calcd. Found	54.71 54.60	3.39 3.31	22.19 22.10	6.35 6.40	7.02 6.90						
14a	C23H18N6O2S	Calcd.	62.43	4.10	18.99	7.25	-						
		Found	62.34	4.01	18.87	7.14	_						
14b	$C_{23}H_{17}N_6O_2SCl$	Calcd.	57.92	3.59	17.62	6.72	7.43						
15a	C ₃₀ H ₂₅ N ₇ O ₂ S	Found Calcd.	57.83 65.80	3.49 4.60	17.53 17.90	6.64 5.86	7.34						
	030112511/020	Found	65.71	4.52	17.79	5.71	_						
15b	$C_{30}H_{24}N_7O_2SCl$	Calcd.	61.90	4.16	16.84	5.51	6.09						
1(-	C II N O C	Found	62.18	4.03	16.73	5.39	5.88						
16a	$C_{31}H_{23}N_7O_2S$	Calcd. Found	66.77 66.66	4.16 4.11	17.58 17.47	5.75 5.63	_						
16b	C31H22N7O2SCl	Calcd.	62.89	3.75	16.56	5.42	5.99						
	51 22 / 2	Found	62 78	3 69	16 50	5 34	5.84						

Table 2 The elemental analyses of the prepared compounds.

Elemental analyses

DOI 10.1002/jhet Journal of Heterocyclic Chemistry

Found

62.78

3.69

16.50

5.84

5.34

March 2013 Synthesis of Some New Heterocycles Derived from Ethyl 7-Amino-3-(3-methyl-5-oxo-1-phenyl-2pyrazolin-4-yl)-5-aryl-5*H*-thiazolo[3,2-*a*]pyrimidine-6-carboxylate of Biological Importance

8-Ethylthio-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-p-chlorophenyl-7-phenyl-5,7-dihydrothiazolo[3,2-a]pyrimido [4,5-d]pyrimidine (6b). Crystallized from ethanol to give yellow crystals, yield 4.06 g (65%), mp 240–242°C. IR (KBr): 2915 (CH aliphatic), 1695 (CO pyrimidine), 1640 (CO pyrazolone) cm⁻¹. ¹H NMR (DMSO- d_6 , 90MHz): $\delta = 8.00-7.30$ (m, 14H, phenyl protons), 7.00 (s, thiazole-H), 6.90 (s, pyrimidine-H), 6.80 (s, pyrazolone-H), 4.10 (q, J = 10 Hz, CH₂), 2.20 (s, CH₃ pyrazolone), 1.00 (t, J = 10 Hz, CH₃) ppm.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-7-phenyl-5,7-dihydro-8-hydrazino thiazolo[3,2-a]pyrimido[4,5-d] pyrimidine 7a,b. To a solution of **6a** or **6b** (10 mmol) in pyridine (30 mL), hydrazine hydrate 98% (0.49 mL, 10 mmol) was added and the reaction mixture was refluxed for 2 h. The product thus formed was filtered-off, dried, and crystallized from the proper solvent to give **7a** and **7b**, respectively.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5,7diphenyl-5,7-dihydro-8-hydrazinohiazolo[3,2-a]pyrimido[4,5-d] pyrimidine (7a). Crystallized from benzene to give pale yellow crystals, yield 3.92 g (55%), mp 245–247°C. IR (KBr): 3400–3150 (NHNH₂), 1690 (CO pyrimidine), 1630 (CO pyrazolone) cm⁻¹; ¹H NMR (DMSO- d_6 , 90 MHz): $\delta = 10.40$ (s, NH exchangable with D₂O), 7.90–7.30 (m, 15H, phenyl protons), 7.10 (s, thiazole-H), 7.00 (s, pyrimidine-H), 6.90 (s, pyrazolone-H), 5.50 (s, NH₂ exchangable with D₂O), 2.20 (s,CH₃ pyrazolone) ppm. EI ms: m/z: 559.72 [M⁺] (71), 544.13 (21), 483.12 (53), 329.10 (15), 173.12 (76), 77 (61).

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-pchlorophenyl-7-phenyl-5,7-dihydro-8-hydrazinothiazolo[3,2-a] pyrimido[4,5-d]pyrimidine (7b). Crystallized from ethanol to give yellow crystals, yield 4.16 g (70%), mp 251–253°C. IR (KBr): 3400–3150 (NHNH₂), 1690 (CO pyrimidine), 1630 (CO pyrazolone) cm⁻¹. ¹H NMR (DMSO- d_6 , 90 MHz): δ = 10.40 (s, NH exchangable with D₂O), 7.90–7.20 (m, 14H, phenyl protons), 7.00 (s, thiazole-H), 6.90 (s, pyrimidine-H), 6.81 (s, pyrazolone-H), 5.50 (s, NH₂ exchangable with D₂O), 2.20 (s, CH₃ pyrazolone) ppm.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-7-N-formylamino-5,7-dihydro-5H-thiazolo[3,2-*a***]pyrimido[4,5***d*]**pyrimidine 8a,b.** A mixture of **4a** or **4b** (10 mmol) with formic acid (20 mL) was refluxed for 4 h. The precipitate thus formed after cooling was collected, dried, and crystallized from the proper solvent to give **8a** and **8b**, respectively.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-phenyl-7-N-formylamino-5,7-dihydro-5H-thiazolo[3,2-a]pyrimido[4,5-d] *pyrimidine (8a).* Crystallized from ethanol to give white powder, yield 3.39 g (68%), mp 215-217°C. IR (KBr): 3350 (NH), 1705 (CO formyl), 1690 (CO pyrimidine), 1645 (CO pyrazolone) cm^{-1} . ¹H NMR (400 MHz, DMSO-*d*₆): $\delta = 10.80$ (s, NH exchangable with D₂O), 8.51 (s, formyl-H), 7.72 (s, pyrimidine-H), 7.64-7.24 (m, 5H, phenyl protons), 7.14-7.06 (m, 5H, phenyl protons), 7.00 (s, thiazole-H), 6.90 (s, pyrimidine-H), 6.76 (s, pyrazolone-H), 2.23 (s, CH₃ pyrazolone) ppm. ¹³C NMR (DMSO- d_6 , 400 MHz): $\delta = 170$ (CO pyrazolone), 167 (C=O pyrimidine), 165 (CHO), 163 (CH=N pyrimidine), 161 (C=N pyrimidine), 159 and 103 (C=C pyrimidine), 155 (C=N pyrazolone), 154 (C thiazole), 142-124 (C and CH phenyl rings), 89 (CH thiazole), 50 (CH pyrazolone), 45 (CH pyrimidine), 18 (CH₃ pyrazolone) ppm. EI ms: m/z: 497.02 [M⁺] (72), 479.01 (49), 469.11(39), 173.12 (76), 77 (61), 28 (5), 18 (10).

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-p*chlorophenyl-7-N-formylamino-5,7-dihydro-5H-thiazolo[3,2-a] pyrimido[4,5-d]pyrimidine (8b).* Crystallized from ethanol to give pale yellow crystals, yield 3.49 g (68%), mp 222–224°C. IR (KBr): 3350 (NH), 1705 (CO formyl), 1690 (CO pyrimidine), 1645 (CO pyrazolone) cm^{-1.} ¹H NMR (CDCl₃, 90 MHz): δ = 10.80 (s, NH exchangable with D₂O), 8.60 (s, formyl-H), 8.00 (s, pyrimidine-H), 7.60–7.20 (m, 9H, phenyl protons), 7.00 (s, thiazole-H), 6.80 (s, pyrimidine-H), 6.60 (s, pyrazolone-H), 2.30 (s, CH₃ pyrazolone) ppm.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-8-methyl-7-*N*,*N*-**diacetylamino-5,7-dihydrothiazolo[3,2-***a***] pyrimido[4,5-***d***]pyrimidine 9a,b.** A mixture of **4a** or **4b** (10 mmol) and acetic anhydride (20 mL) was refluxed for 3 h. The reaction mixture was diluted with water and allowed to stand at room temperature for 1 h. The precipitate thus obtained was collected, dried, and crystallized from the proper solvent to give **9a** and **9b**, respectively.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-phenyl-8-methyl-7-N,N-diacetylamino-5,7-dihydrothiazolo[3,2-a]pyrimido [4,5-d]pyrimidine (9a). Crystallized from ethanol to give white crystals, yield 3.92 g (69%), mp 240-242°C. IR (KBr): 3000-2915 (CH aliphatic), 1760-1690 (2CO acetyl), 1645 (CO pyrazolone) cm^{-1} . ¹H NMR (CDCl₃, 400 MHz): $\delta = 7.64-7.24$ (m, 5H, phenyl protons), 7.14-7.06 (m, 5H, phenyl protons), 6.92 (s, thiazole-H), 6.80 (s, pyrimidine-H), 6.71 (s, pyrazolone-H), 2.40 (s, 2CH₃), 2.20 (s, CH₃ pyrazolone), 1.20 (s, CH₃ pyrimidine) ppm. ¹³C NMR (CDCl₃, 400 MHz): $\delta = 175$ (2CO acetyl), 170 (CO pyrazolone), 167 (C=O pyrimidine), 164 (CH=N pyrimidine), 161 (C=N pyrimidine), 159 and 103 (C=C pyrimidine), 155 (C=N pyrazolone), 154 (C thiazole), 142-124 (C and CH phenyl rings), 89 (CH thiazole), 50 (CH pyrazolone), 45 (CH pyrimidine), 18 (CH₃ pyrazolone), 14 (CH₃ pyrimidine), 16 (2CH₃ acetyl) ppm. EI ms: m/z: 566.96 [M⁺] (69), 524.38 (10), 481.30 (15), 173.12 (76), 77 (61).

3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-p-chlorophenyl-8-methyl-7-N,N-diacetylamino-5,7-dihydrothiazolo[3,2-a]pyrimido [4,5-d] pyrimidine (9b). Crystallized from ethanol to give yellow powder, yield 4.15 g (69%), mp 253–255°C. IR (KBr): 3000–2915 (CH aliphatic), 1760–1690 (2CO acetyl), 1645 (CO pyrazolone) cm⁻¹. ¹H NMR (DMSO-d₆, 90 MHz): δ = 7.60–7.20 (m, 9H, phenyl protons), 7.00 (s, thiazole-H), 6.82 (s, pyrimidine-H), 6.60 (s, pyrazolone-H), 2.40 (s, 2CH₃), 2.26 (s, CH₃ pyrazolone), 1.20 (s, CH₃ pyrimidine) ppm.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-7-amino-7,9-dihydro-5H-thiazolo[3,2-*a***]-pyrimido[4,5-d]pyrimidine-6,8-dione 10a,b.** A mixture of **4a** or **4b** (10 mmoles) and urea (0.6 g, 10 mmol) was refluxed in decalin (30 mL) for 3 h. The solid product thus obtained on cooling was filtered off, washed with pet. ether 60–80 and crystallized from the proper solvent to give **10a** and **10b**, respectively.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-phenyl-7-amino-7,9-dihydro-5H-thiazolo [3,2-a]pyrimido[4,5-d]pyrimidine-6,8-dione (10a). Crystallized from benzene to give white crystals, yield 2.80 g (68%), mp 271–273°C; IR (KBr): 3400 (NH₂), 3150 (NH), 1720–1695 (2 C=O pyrimidine), 1640 (C=O pyrazolone) cm⁻¹. ¹H NMR (DMSO-d₆, 400MHz): δ = 10.50 (s, NH exchangable with D₂O), 9.70 (s, NH₂ exchangable with D₂O), 7.64–7.24 (m, 5H, phenyl protons), 7.14–7.06 (m, 5H, phenyl protons), 6.95 (s, thiazole-H), 6.85 (s, pyrimidine-H), 6.71 (s, pyrazolone-H), 2.25 (s, CH₃) pyrazolone) ppm; ¹³C NMR (DMSO-*d*₆, 400 MHz): δ = 170 (CO pyrazolone), 167 (C=O pyrimidine), 161 (C=N pyrimidine), 159 and 103 (C=C pyrimidine), 155 (C=N pyrazolone), 154 (C thiazole), 150 (C=O pyrimidine), 142–124 (C and CH phenyl rings), 89 (CH thiazole), 50 (CH pyrazolone), 45 (CH pyrimidine), 18 (CH₃ pyrazolone) ppm. EI ms: *m/z*: 484.80 [M⁺] (80), 469.45 (71), 467.13 (34), 331.10 (24), 173.12 (76), 77 (61).

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-p-chlorophenyl-7-amino-7,9-dihydro-5H-thiazolo[3,2-a]pyrimido[4,5-d]pyrimidine-6,8-dione (10b). Crystallized from ethanol to give brown powder, yield 3.38 g (65%), mp 265–267°C. IR (KBr): 3400 (NH₂), 3150 (NH), 1720–1695 (2 C=O pyrimidine), 1640 (C=O pyrazolone) cm⁻¹. ¹H NMR (DMSO-d₆, 90 MHz): δ = 10.70 (s, NH exchangable with D₂O), 9.70 (s, NH₂ exchangable with D₂O), 7.60–7.20 (m, 9H, phenyl protons), 7.00 (s, thiazole-H), 6.90 (s, pyrimidine-H), 6.70 (s, pyrazolone-H), 2.20 (s, CH₃ pyrazolone) ppm.

4-(7-Amino-6-(3,5-dimethyl-1H-pyrazole-1-carbonyl)-5-aryl-5H-thiazolo[3,2-a]pyrimidin-3-yl)-3-methyl-1-phenyl-2-pyrazolin-5-one 11a,b. A mixture of **4a** or **4b** (10 mmol) and acetyl acetone (1.00 g, 10 mmol) in ethanol (30 mL) was refluxed for 3 h. On cooling, the formed solid product was filtered-off, dried, and crystallized from the proper solvent to give **11a** and **11b**, respectively.

4-(7-Amino-6-(3,5-dimethyl-1H-pyrazole-1-carbonyl)-5-phenyl-5H-thiazolo[3,2-a]pyrimidin- 3-yl)-3-methyl-1-phenyl-2-pyrazolin-5-one (11a). Crystallized from benzene to give yellow powder, yield 3.46 g (66%), mp 230–232°C. IR (KBr): 3300–3100 (NH₂), 2960 (CH aliphatic), 1660 (CO pyrimidine), 1640 (CO pyrazolone) cm⁻¹. ¹H NMR (DMSO-d₆, 90 MHz): δ = 7.95–7.30 (m, 10H, phenyl protons), 7.20 (s, thiazole-H), 7.10 (s, pyrimidine-H), 7.00 (s, pyrazolone-H), 6.85 (s, pyrazole-H), 5.40 (s, NH₂ exchangable with D₂O), 2.20 (s, CH₃), 2.10 (s, 2CH₃ pyrazole) ppm.

4-(7-Amino-6-(3,5-dimethyl-1H-pyrazole-1-carbonyl)-5-pchlorophenyl-5H-thiazolo[3,2-a]- pyrimidin-3-yl)-3-methyl-I-phenyl-2-pyrazolin-5-one (11b). Crystallized from benzene to give pale yellow crystals, yield 3.91 g (70%), mp 249–250°C. IR (KBr): 3300–3100 (NH₂), 2960 (CH aliphatic), 1660 (CO pyrimidine), 1640 (CO pyrazolone) cm⁻¹; ¹H NMR (DMSO-d₆, 90 MHz): δ = 8.00–7.40 (m, 9H, phenyl protons), 7.20 (s, thiazole-H), 7.11 (s, pyrimidine-H), 7.10 (s, pyrazolone-H), 6.90 (s, pyrazole-H), 5.40 (s, NH₂ exchangable with D₂O), 2.20 (s, CH₃), 2.10 (s, 2CH₃ pyrazole) ppm.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-7-ethoxymethyleneamino-5,7-dihydro-thiazolo[3,2-a]pyrimido [4,5-d]pyrimidine 12a,b. A mixture of **4a** or **4b** (5 mmoles) and triethyl orthoformate (20 mL) was refluxed for 3 h. The solid precipitate thus formed on cooling was collected, dried, and crystallized from the proper solvent to give **12a** and **12b**, respectively.

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-phenyl-7-ethoxymethyleneamino-5,7-dihydro-thiazolo[3,2-a]pyrimido [4,5-d]pyrimidine (12a). Crystallized from ethanol to give white needles, yield 1.81 g (69%), mp 238–239°C. IR (KBr): 2960 (CH aliphatic), 1680 (CO pyrimidine), 1635 (CO pyrazolone), 1580 (C=N) cm⁻¹. ¹H NMR (DMSO- d_6 , 90MHz): δ = 7.90–7.50 (m, 10H, phenyl protons and N=CH), 7.50 (s, pyrimidine-H), 7.20 (s. thiazole-H), 7.00 (s, pyrimidine-H), 6.90 (s, pyrazolone), 1.3 (t, J = 6.7Hz, CH₃) ppm. EI ms: m/z: 525.05 [M⁺] (69), 479.16 (42), 173.12 (76), 77 (61), 46 (12) 44.12 (5).

3-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-pchlorophenyl-7-ethoxymethyleneamino-5,7-dihydro-thiazolo [3,2-a]pyrimido[4,5-d] pyrimidine (12b). Crystallized from ethanol to give white crystals, yield 1.96 g (70%), mp 240–241° C. IR (KBr): 2960 (CH aliphatic), 1680 (CO pyrimidine), 1635 (CO pyrazolone), 1580 (C=N) cm⁻¹. ¹H NMR (DMSO-d₆, 90 MHz): δ = 7.90–7.60 (m, 9H, phenyl protons and N=CH), 7.50 (s, pyrimidine-H), 7.20 (s, thiazole-H), 7.00 (s, pyrimidine-H), 6.90 (s, pyrazolone-H), 4.00 (q, *J* = 6.7 Hz, CH₂), 2.40 (s, CH₃ pyrazolone), 1.3 (t, *J* = 6.7 Hz, CH₃) ppm. EI ms: *m/z*: 561.62 [M⁺+2] (23), 559.53 [M⁺] (76), 173.12 (76), 77 (61), 37.20 (9), 35.10 (19).

7-Amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5H-thiazolo[3,2-a]pyrimidine-6-carboazide 13a,b. To a cold solution of **4a** or **4b** (10 mmol) in glacial acetic acid (30 mL), sodium nitrite solution (0.69 g, 10 mmol) in water (5 mL) was added dropwise with stirring during 10 min at room temperature. The formed precipitate was collected, dried, and crystalized from the proper solvent to give **13a** and **13b**, respectively.

7-Amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-phenyl-5H-thiazolo[3,2-a]- pyrimidine-6-carboazide (13a). Crystallized from benzene to give brown crystals, yield 3.38 g (72%), mp 210–212°C. IR (KBr): 3400–3200 (NH₂), 2960 (CH aliphatic), at 2270 appearance of azide group (N₃), 1695 (CO), 1620 (CO pyrazolone) cm⁻¹. ¹H NMR (DMSO-d₆, 90MHz): δ = 8.00–7.30 (m, 10H, phenyl protons), 7.10 (s, thiazole-H), 7.00 (s, pyrimidine-H), 6.90 (s, pyrazolone-H), 5.50 (s, NH₂ exchangable with D₂O), 2.30 (s, CH₃) ppm.

7-Amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-pchlorophenyl-5H-thiazolo[3,2-a]- pyrimidine-6-carboazide (13b). Crystallized from benzene to give red crystals, yield 3.58 g (71%), mp 215–217°C; IR (KBr): 3400, 3200 (NH₂), 2960 (CH aliphatic), at 2270 appearance of azide group (N₃), 1695 (CO), 1625 (CO pyrazolone) cm⁻¹. ¹H NMR (DMSO- d_6 , 90 MHz): δ = 8.10–7.20 (m, 9H, phenyl protons), 7.10 (s, thiazole-H), 7.00 (s, pyrimidine-H), 6.90 (s, pyrazolone-H), 5.50 (s, NH₂ exchangable with D₂O), 2.30 (s, CH₃ pyrazolone) ppm.

7-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-9-aryl-2oxo-1,3-dihydro-9H-imidazo[4,5-d]-thiazolo[3,2-a]pyrimidine 14a,b. The carboazide **13** (5 mmol) was heated under reflux for 3 h in dry toluene (30 mL). The reaction mixture was cooled whereby a precipitated solid was formed. It was collected and crystallized from the proper solvent to give **14a** and **14b**, respectively.

7-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-9-phenyl-2oxo-1,3-dihydro-9H-imidazo[4,5-d]-thiazolo[3,2-a]pyrimidine (14a). Crystallized from dioxane to give yellow crystals, yield 1.61 g (73%), mp 245–246°C. IR (KBr): 3400–3310 (2NH), disappearance of azide and amino groups, 1680 (CO), 1630 (CO pyrazolone) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 11.10 (s, 2NH exchangable with D₂O), 7.64–7.24 (m, 5H, phenyl protons), 7.14–7.06 (m, 5H, phenyl protons), 6.95 (s, thiazole-H), 6.85 (s, pyrimidine-H), 6.71 (s, pyrazolone-H), 2.25 (s, CH₃ pyrazolone) ppm. ¹³C NMR (CDCl₃, 400 MHz): δ = 170 (CO pyrazolone), 161 (C=N pyrimidine), 155 (C=N pyrazolone), 154 (C thiazole), 142–124 (C and CH phenyl rings), 111 and 107 (C=C pyrimidine), 89 (CH thiazole), 50 (CH pyrazolone), 45 (CH pyrimidine), 18 (CH₃ pyrazolone) ppm. March 2013 Synthesis of Some New Heterocycles Derived from Ethyl 7-Amino-3-(3-methyl-5-oxo-1-phenyl-2pyrazolin-4-yl)-5-aryl-5*H*-thiazolo[3,2-*a*]pyrimidine-6-carboxylate of Biological Importance

7-(3-Methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-9-p-chlorophenyl-2-oxo-1,3-dihydro-9H-imidazo[4,5-d]thiazolo[3,2-a]pyrimidine (14b). Crystallized from dioxane to give pale yellow crystals, yield 1.72 g (72%), mp 248–250°C. IR (KBr): 3400–3300 (2NH), disappearance of azide and amino groups, 1680 (CO), 1630 (CO pyrazolone) cm⁻¹. ¹H NMR (DMSO-d₆, 90 MHz): δ = 11.10 (s, 2NH exchangable with D₂O), 7.60–7.20 (m, 9H, phenyl protons), 7.00 (s, thiazole-H), 6.82 (s, pyrimidine-H), 6.60 (s, pyrazolone-H), 2.30 (s, CH₃ pyrazolone) ppm.

Benzaldehyde,7-amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-aryl-5*H*-thiazolo[3,2-*a*]pyrimidine-6-carbohydrazone 15a,b. A mixture of 4a or 4b (10 mmol) and benzaldehyde (10 mmol) in ethanol (30 mL) containing few drops of piperidine was refluxed for 3 h. The solid thus formed was collected and crystallized from the proper solvent to give 15a and 15b, respectively.

Benzaldehyde,7-amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-5-phenyl-5H-thiazolo-[3,2-a]pyrimidine-6-carbohydrazone (15a). Crystallized from dioxane to give yellow powder, yield 3.83 g (70%), mp 250–251°C; IR (KBr): 3350–3250 (NH, NH₂), 1660 (CO pyrimidine), 1640 (CO pyrazolone), 1580 (C=N) cm⁻¹. ¹H NMR (DMSO-d₆, 90 MHz): δ =11.10 (s, NH exchangable with D₂O), 9.50 (s, CH), 8.00–7.40 (m, 15H, phenyl protons) 7.10 (s, thiazole-H), 6.90 (s, H-pyrimidine), 6.80 (s, pyrazolone-H), 5.40 (s, NH₂ exchangable with D₂O), 2.30 (s, CH₃ pyrazolone) ppm.

Benzaldehyde, 7-amino-3-(3-methyl-5-oxo-1-phenyl-2pyrazolin-4-yl)-5-p-chlorophenyl-5H-thiazolo[3,2-a]pyrimidine-6-carbohydrazone (15b). Crystallized from dioxane to give pale yellow crystals, yield 4.25 (73%), mp 255–257°C; IR (KBr): 3350–3250 (NH, NH₂), 1660 (CO pyrimidine), 1640 (CO pyrazolone), 1580 (C=N) cm⁻¹. ¹H NMR (DMSO- d_6 , 90 MHz): $\delta = 11.10$ (s, NH exchangable with D₂O), 9.50 (s, CH), 8.10–7.40 (m, 14H, phenyl protons), 7.10 (s, thiazole-H), 7.00 (s, pyrimidine-H), 6.85 (s, pyrazolone-H), 5.40 (s, NH₂ exchangable with D₂O), 2.30 (s, CH₃ pyrazolone) ppm.

7-Benzylideneamino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-aryl-5H-thiazolo- [**3,2-***a*]**pyrimido**[**4,5-***d*]**pyrimidine 16a,b.** A mixture of **15a** or **15b** (5 mmol), triethyl orthoformate (5 mmol), and acetic anhydride (15 mL) was refluxed for 3 h. The solid precipitate thus formed on cooling was collected, dried, and crystallized from the proper solvent to give **16a** and **16b**, respectively.

7-Benzylideneamino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-phenyl-5H-thiazolo [3,2-a]pyrimido[4,5-d]pyrimidine (16a). Crystallized from dioxane to give pale brown powder, yield 1.92 g (69%), mp 262–264°C. IR (KBr): 1680 (CO pyrimidine), 1630 (CO pyrazolone), 1580 (C=N) cm⁻¹. ¹H NMR (CDCl₃, 400 MHz): δ = 8.20 (s, CH), 7.76 (s, pyrimidine-H), 7.64–7.06 (m, 15H, phenyl protons), 6.95 (s, thiazole-H), 6.85 (s, pyrimidine-H), 6.71 (s, pyrazolone-H), 2.25 (s, CH₃ pyrazolone) ppm. ¹³C NMR (CDCl₃, 400 MHz): δ = 170 (CO pyrazolone), 167 (C=O pyrimidine), 163 (CH=N pyrimidine), 161 (C=N pyrimidine), 159 and 103 (C=C pyrimidine), 157 (N=CH), 155 (C=N pyrazolone), 154 (C thiazole), 142–124 (C and CH phenyl rings), 89 (CH thiazole), 50 (CH pyrazolone), 45 (CH pyrimidine), 18 (CH₃ pyrazolone) ppm.

7-Benzylideneamino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-6-oxo-5-p-chlorophenyl-5H-thiazolo[3,2-a]pyrimido[4,5-d] pyrimidine (16b). Crystallized from dioxane to give yellow powder, yield 2.07 g (70%), mp 259–261°C. IR (KBr): 1680 (CO pyrimidine), 1630 (CO pyrazolone), 1580 (C=N) cm⁻¹. ¹H NMR (CDCl₃, 90 MHz): $\delta = 8.30$ (s, CH), 7.78 (s, pyrimidine-H), 7.67–7.10 (m, 14H, phenyl protons), 7.00 (s, thiazole-H), 6.82 (s, pyrimidine-H), 6.60 (s, pyrazolone-H), 2.30 (s, CH₃ pyrazolone) ppm.

Acknowledgments. The authors are grateful to Assiut University Mycological Center (AUMC) for biological analyses.

REFERENCES AND NOTES

[1] Aly, A. A. J Heterocycl Chem 2009, 45, 993.

[2] Kulakov, I. V. Russ J Org Chem 2009, 45, 1262.

[3] Kulakov, I. V. Chem Heterocycl Comp 2009, 45, 1019.

[4] Kulakov, I. V.; Nurkenov, O. A.; Turdybekov, D. M.; Issabaeva, G. M.; Mahmutova, A.S.; Turdybekov, K. M. Chem Heterocyclic Compds 2009, 45, 1573.

[5] Sayed, H. H.; Shamroukh, A. H.; Rashad, A. E. Acta Pharm 2006, 56, 231.

[6] Mahmoud, M. R.; El-Shahawi, M. M. Phosphorus Sulfur Silicon 2008, 183, 3097.

[7] Quan, Z. J.; Zhang, Z.; Wang, J. K.; Wang, X. C.; Liu, Y. J.; Ji, P.Y. Heteroatom Chem 2008, 19, 149.

[8] Kurbanova, M. M. Russ J Org Chem 2006, 42, 1871.

[9] Youssef, M. M.; Mohamed, S. F.; Kotb, E. R.; Salama, M. A. World J Chem 2009, 4, 149.

[10] Zhi, H.; Chen, L.; Zhang, L.; Liu, S.; Wan, D. C. C.; Lin, H.; Hu, C. Arkivoc 2008, 13, 266.

[11] Zhi, H.; Chen, L.; Zhang, L.; Liu, S.; Wan, D. C. C.; Lin, H.; Hu, C. Chem Res Chinese Univ 2009, 25, 332.

[12] Awadallah, F. M. Sci Pharm 2008, 76, 415.

[13] Al Thebeiti, M. S. Boll Chim Farm 2001, 140, 221.

[14] Khobragade, C. N.; Bodade, R. G.; Dawane, B. S.; Konda,

S. G.; Khandare, N. T. J Enzyme Inhib Med Chem 2010, 25, 615.
 [15] Alam, O.; Khan, S. A.; Siddiqui, N.; Ahsan, W. Med Chem

Res 2009, 19, 1245. [16] Youssef, M. S. K.; Ahmed, R. A.; Abbady, M. S.; Abd El

Mohsen, A. A.; Omar, A. A.; Monatsh Chem 2008, 139, 55.

Compound Details

Structure Search

2a H₃C ҼӉ 0 CH2

Compound Details

Structure Search

Compound Details

Structure Search

Structure Search

6a

Compound Details

Compound Details

8b

Compound Details

Structure Search

Compound Details Structure Search

Compound Details

9b CH₃ ĊH₃ CH₃ **Compound Details** Structure Search

8a

10b H₃(.NH₂ Ĥ Compound Details Structure Search

Compound Details

Structure Search

11b

Compound Details Structure Search

Compound Details Structure Search

12b ċн, **Compound Details** Structure Search

Structure Search

14a H₃C NH

Compound Details

Structure Search

Compound Details Structure Search

Compound Details

Structure Search

